Rakesh Chada


pdf bib
CGF: Constrained Generation Framework for Query Rewriting in Conversational AI
Jie Hao | Yang Liu | Xing Fan | Saurabh Gupta | Saleh Soltan | Rakesh Chada | Pradeep Natarajan | Chenlei Guo | Gokhan Tur
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track

In conversational AI agents, Query Rewriting (QR) plays a crucial role in reducing user frictions and satisfying their daily demands. User frictions are caused by various reasons, such as errors in the conversational AI system, users’ accent or their abridged language. In this work, we present a novel Constrained Generation Framework (CGF) for query rewriting at both global and personalized levels. It is based on the encoder-decoder framework, where the encoder takes the query and its previous dialogue turns as the input to form a context-enhanced representation, and the decoder uses constrained decoding to generate the rewrites based on the pre-defined global or personalized constrained decoding space. Extensive offline and online A/B experiments show that the proposed CGF significantly boosts the query rewriting performance.

pdf bib
FPI: Failure Point Isolation in Large-scale Conversational Assistants
Rinat Khaziev | Usman Shahid | Tobias Röding | Rakesh Chada | Emir Kapanci | Pradeep Natarajan
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track

Large-scale conversational assistants such as Cortana, Alexa, Google Assistant and Siri process requests through a series of modules for wake word detection, speech recognition, language understanding and response generation. An error in one of these modules can cascade through the system. Given the large traffic volumes in these assistants, it is infeasible to manually analyze the data, identify requests with processing errors and isolate the source of error. We present a machine learning system to address this challenge. First, we embed the incoming request and context, such as system response and subsequent turns, using pre-trained transformer models. Then, we combine these embeddings with encodings of additional metadata features (such as confidence scores from different modules in the online system) using a “mixing-encoder” to output the failure point predictions. Our system obtains 92.2% of human performance on this task while scaling to analyze the entire traffic in 8 different languages of a large-scale conversational assistant. We present detailed ablation studies analyzing the impact of different modeling choices.


pdf bib
FewshotQA: A simple framework for few-shot learning of question answering tasks using pre-trained text-to-text models
Rakesh Chada | Pradeep Natarajan
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The task of learning from only a few examples (called a few-shot setting) is of key importance and relevance to a real-world setting. For question answering (QA), the current state-of-the-art pre-trained models typically need fine-tuning on tens of thousands of examples to obtain good results. Their performance degrades significantly in a few-shot setting (< 100 examples). To address this, we propose a simple fine-tuning framework that leverages pre-trained text-to-text models and is directly aligned with their pre-training framework. Specifically, we construct the input as a concatenation of the question, a mask token representing the answer span and a context. Given this input, the model is fine-tuned using the same objective as that of its pre-training objective. Through experimental studies on various few-shot configurations, we show that this formulation leads to significant gains on multiple QA benchmarks (an absolute gain of 34.2 F1 points on average when there are only 16 training examples). The gains extend further when used with larger models (Eg:- 72.3 F1 on SQuAD using BART-large with only 32 examples) and translate well to a multilingual setting . On the multilingual TydiQA benchmark, our model outperforms the XLM-Roberta-large by an absolute margin of upto 40 F1 points and an average of 33 F1 points in a few-shot setting (<= 64 training examples). We conduct detailed ablation studies to analyze factors contributing to these gains.

pdf bib
Error Detection in Large-Scale Natural Language Understanding Systems Using Transformer Models
Rakesh Chada | Pradeep Natarajan | Darshan Fofadiya | Prathap Ramachandra
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021


pdf bib
Simultaneous paraphrasing and translation by fine-tuning Transformer models
Rakesh Chada
Proceedings of the Fourth Workshop on Neural Generation and Translation

This paper describes the third place submission to the shared task on simultaneous translation and paraphrasing for language education at the 4th workshop on Neural Generation and Translation (WNGT) for ACL 2020. The final system leverages pre-trained translation models and uses a Transformer architecture combined with an oversampling strategy to achieve a competitive performance. This system significantly outperforms the baseline on Hungarian (27% absolute improvement in Weighted Macro F1 score) and Portuguese (33% absolute improvement) languages.


pdf bib
Gendered Pronoun Resolution using BERT and an Extractive Question Answering Formulation
Rakesh Chada
Proceedings of the First Workshop on Gender Bias in Natural Language Processing

The resolution of ambiguous pronouns is a longstanding challenge in Natural Language Understanding. Recent studies have suggested gender bias among state-of-the-art coreference resolution systems. As an example, Google AI Language team recently released a gender-balanced dataset and showed that performance of these coreference resolvers is significantly limited on the dataset. In this paper, we propose an extractive question answering (QA) formulation of pronoun resolution task that overcomes this limitation and shows much lower gender bias (0.99) on their dataset. This system uses fine-tuned representations from the pre-trained BERT model and outperforms the existing baseline by a significant margin (22.2% absolute improvement in F1 score) without using any hand-engineered features. This QA framework is equally performant even without the knowledge of the candidate antecedents of the pronoun. An ensemble of QA and BERT-based multiple choice and sequence classification models further improves the F1 (23.3% absolute improvement upon the baseline). This ensemble model was submitted to the shared task for the 1st ACL workshop on Gender Bias for Natural Language Processing. It ranked 9th on the final official leaderboard.