Rakesh R. Menon


2023

pdf bib
LaSQuE: Improved Zero-Shot Classification from Explanations Through Quantifier Modeling and Curriculum Learning
Sayan Ghosh | Rakesh R. Menon | Shashank Srivastava
Findings of the Association for Computational Linguistics: ACL 2023

A hallmark of human intelligence is the ability to learn new concepts purely from language. Several recent approaches have explored training machine learning models via natural language supervision. However, these approaches fall short in leveraging linguistic quantifiers (such as ‘always’ or ‘rarely’) and mimicking humans in compositionally learning complex tasks. Here, we present LaSQuE, a method that can learn zero-shot classifiers from language explanations by using three new strategies - (1) modeling the semantics of linguistic quantifiers in explanations (including exploiting ordinal strength relationships, such as ‘always’ > ‘likely’), (2) aggregating information from multiple explanations using an attention-based mechanism, and (3) model training via curriculum learning. With these strategies, LaSQuE outperforms prior work, showing an absolute gain of up to 7% in generalizing to unseen real-world classification tasks.

pdf bib
CoAug: Combining Augmentation of Labels and Labelling Rules
Rakesh R. Menon | Bingqing Wang | Jun Araki | Zhengyu Zhou | Zhe Feng | Liu Ren
Findings of the Association for Computational Linguistics: ACL 2023

Collecting labeled data for Named Entity Recognition (NER) tasks is challenging due to the high cost of manual annotations. Instead, researchers have proposed few-shot self-training and rule-augmentation techniques to minimize the reliance on large datasets. However, inductive biases and restricted logical language lexicon, respectively, can limit the ability of these models to perform well. In this work, we propose CoAug, a co-augmentation framework that allows us to improve few-shot models and rule-augmentation models by bootstrapping predictions from each model. By leveraging rules and neural model predictions to train our models, we complement the benefits of each and achieve the best of both worlds. In our experiments, we show that our best CoAug model can outperform strong weak-supervision-based NER models at least by 6.5 F1 points.

2022

pdf bib
CLUES: A Benchmark for Learning Classifiers using Natural Language Explanations
Rakesh R. Menon | Sayan Ghosh | Shashank Srivastava
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Supervised learning has traditionally focused on inductive learning by observing labeled examples of a task. In contrast, a hallmark of human intelligence is the ability to learn new concepts purely from language. Here, we explore training zero-shot classifiers for structured data purely from language. For this, we introduce CLUES, a benchmark for Classifier Learning Using natural language ExplanationS, consisting of a range of classification tasks over structured data along with natural language supervision in the form of explanations. CLUES consists of 36 real-world and 144 synthetic classification tasks. It contains crowdsourced explanations describing real-world tasks from multiple teachers and programmatically generated explanations for the synthetic tasks. To model the influence of explanations in classifying an example, we develop ExEnt, an entailment-based model that learns classifiers using explanations. ExEnt generalizes up to 18% better (relative) on novel tasks than a baseline that does not use explanations. We delineate key challenges for automated learning from explanations, addressing which can lead to progress on CLUES in the future. Code and datasets are available at: https://clues-benchmark.github.io.

2021

pdf bib
Improving and Simplifying Pattern Exploiting Training
Derek Tam | Rakesh R. Menon | Mohit Bansal | Shashank Srivastava | Colin Raffel
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recently, pre-trained language models (LMs) have achieved strong performance when fine-tuned on difficult benchmarks like SuperGLUE. However, performance can suffer when there are very few labeled examples available for fine-tuning. Pattern Exploiting Training (PET) is a recent approach that leverages patterns for few-shot learning. However, PET uses task-specific unlabeled data. In this paper, we focus on few-shot learning without any unlabeled data and introduce ADAPET, which modifies PET’s objective to provide denser supervision during fine-tuning. As a result, ADAPET outperforms PET on SuperGLUE without any task-specific unlabeled data.