Rana Salama


2024

pdf bib
Semantic Compression for Word and Sentence Embeddings using Discrete Wavelet Transform
Rana Salama | Abdou Youssef | Mona Diab
Findings of the Association for Computational Linguistics: ACL 2024

Wavelet transforms, a powerful mathematical tool, have been widely used in different domains, including Signal and Image processing, to unravel intricate patterns, enhance data representation, and extract meaningful features from data. Tangible results from their application suggest that Wavelet transforms can be applied to NLP capturing a variety of linguistic and semantic properties.In this paper, we empirically leverage the application of Discrete Wavelet Transforms (DWT) to word and sentence embeddings. We aim to showcase the capabilities of DWT in analyzing embedding representations at different levels of resolution and compressing them while maintaining their overall quality.We assess the effectiveness of DWT embeddings on semantic similarity tasks to show how DWT can be used to consolidate important semantic information in an embedding vector. We show the efficacy of the proposed paradigm using different embedding models, including large language models, on downstream tasks. Our results show that DWT can reduce the dimensionality of embeddings by 50-93% with almost no change in performance for semantic similarity tasks, while achieving superior accuracy in most downstream tasks. Our findings pave the way for applying DWT to improve NLP applications.

2023

pdf bib
Care4Lang at MEDIQA-Chat 2023: Fine-tuning Language Models for Classifying and Summarizing Clinical Dialogues
Amal Alqahtani | Rana Salama | Mona Diab | Abdou Youssef
Proceedings of the 5th Clinical Natural Language Processing Workshop

Summarizing medical conversations is one of the tasks proposed by MEDIQA-Chat to promote research on automatic clinical note generation from doctor-patient conversations. In this paper, we present our submission to this task using fine-tuned language models, including T5, BART and BioGPT models. The fine-tuned models are evaluated using ensemble metrics including ROUGE, BERTScore andBLEURT. Among the fine-tuned models, Flan-T5 achieved the highest aggregated score for dialogue summarization.