Raul Rodriguez-Esteban


pdf bib
Overview of the Seventh Social Media Mining for Health Applications (#SMM4H) Shared Tasks at COLING 2022
Davy Weissenbacher | Juan Banda | Vera Davydova | Darryl Estrada Zavala | Luis Gasco Sánchez | Yao Ge | Yuting Guo | Ari Klein | Martin Krallinger | Mathias Leddin | Arjun Magge | Raul Rodriguez-Esteban | Abeed Sarker | Lucia Schmidt | Elena Tutubalina | Graciela Gonzalez-Hernandez
Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task

For the past seven years, the Social Media Mining for Health Applications (#SMM4H) shared tasks have promoted the community-driven development and evaluation of advanced natural language processing systems to detect, extract, and normalize health-related information in public, user-generated content. This seventh iteration consists of ten tasks that include English and Spanish posts on Twitter, Reddit, and WebMD. Interest in the #SMM4H shared tasks continues to grow, with 117 teams that registered and 54 teams that participated in at least one task—a 17.5% and 35% increase in registration and participation, respectively, over the last iteration. This paper provides an overview of the tasks and participants’ systems. The data sets remain available upon request, and new systems can be evaluated through the post-evaluation phase on CodaLab.


pdf bib
One model per entity: using hundreds of machine learning models to recognize and normalize biomedical names in text
Victor Bellon | Raul Rodriguez-Esteban
Proceedings of the Biomedical NLP Workshop associated with RANLP 2017

We explored a new approach to named entity recognition based on hundreds of machine learning models, each trained to distinguish a single entity, and showed its application to gene name identification (GNI). The rationale for our approach, which we named “one model per entity” (OMPE), was that increasing the number of models would make the learning task easier for each individual model. Our training strategy leveraged freely-available database annotations instead of manually-annotated corpora. While its performance in our proof-of-concept was disappointing, we believe that there is enough room for improvement that such approaches could reach competitive performance while eliminating the cost of creating costly training corpora.


pdf bib
Author Name Disambiguation in MEDLINE Based on Journal Descriptors and Semantic Types
Dina Vishnyakova | Raul Rodriguez-Esteban | Khan Ozol | Fabio Rinaldi
Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM2016)

Author name disambiguation (AND) in publication and citation resources is a well-known problem. Often, information about email address and other details in the affiliation is missing. In cases where such information is not available, identifying the authorship of publications becomes very challenging. Consequently, there have been attempts to resolve such cases by utilizing external resources as references. However, such external resources are heterogeneous and are not always reliable regarding the correctness of information. To solve the AND task, especially when information about an author is not complete we suggest the use of new features such as journal descriptors (JD) and semantic types (ST). The evaluation of different feature models shows that their inclusion has an impact equivalent to that of other important features such as email address. Using such features we show that our system outperforms the state of the art.