Raymond Fok
2024
ArxivDIGESTables: Synthesizing Scientific Literature into Tables using Language Models
Benjamin Newman
|
Yoonjoo Lee
|
Aakanksha Naik
|
Pao Siangliulue
|
Raymond Fok
|
Juho Kim
|
Daniel S Weld
|
Joseph Chee Chang
|
Kyle Lo
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
When conducting literature reviews, scientists often create literature review tables—tables whose rows are publications and whose columns constitute a schema, a set of aspects used to compare and contrast the papers. Can we automatically generate these tables using language models (LMs)? In this work, we introduce a framework that leverages LMs to perform this task by decomposing it into separate schema and value generation steps. To enable experimentation, we address two main challenges: First, we overcome a lack of high-quality datasets to benchmark table generation by curating and releasing arxivDIGESTables, a new dataset of 2,228 literature review tables extracted from ArXiv papers that synthesize a total of 7,542 research papers. Second, to support scalable evaluation of model generations against human-authored reference tables, we develop DecontextEval, an automatic evaluation method that aligns elements of tables with the same underlying aspects despite differing surface forms. Given these tools, we evaluate LMs’ abilities to reconstruct reference tables, finding this task benefits from additional context to ground the generation (e.g. table captions, in-text references). Finally, through a human evaluation study we find that even when LMs fail to fully reconstruct a reference table, their generated novel aspects can still be useful.
2023
A Question Answering Framework for Decontextualizing User-facing Snippets from Scientific Documents
Benjamin Newman
|
Luca Soldaini
|
Raymond Fok
|
Arman Cohan
|
Kyle Lo
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Many real-world applications (e.g., note taking, search) require extracting a sentence or paragraph from a document and showing that snippet to a human outside of the source document. Yet, users may find snippets difficult to understand as they lack context from the original document. In this work, we use language models to rewrite snippets from scientific documents to be read on their own. First, we define the requirements and challenges for this user-facing decontextualization task, such as clarifying where edits occur and handling references to other documents. Second, we propose a framework that decomposes the task into three stages: question generation, question answering, and rewriting. Using this framework, we collect gold decontextualizations from experienced scientific article readers. We then conduct a range of experiments across state-of-the-art commercial and open-source language models to identify how to best provide missing-but-relevant information to models for our task. Finally, we develop QaDecontext, a simple prompting strategy inspired by our framework that improves over end-to-end prompting. We conclude with analysis that finds, while rewriting is easy, question generation and answering remain challenging for today’s models.
Search
Co-authors
- Benjamin Newman 2
- Kyle Lo 2
- Yoonjoo Lee 1
- Aakanksha Naik 1
- Pao Siangliulue 1
- show all...