Rebecca Sharp


pdf bib
Taxonomy Builder: a Data-driven and User-centric Tool for Streamlining Taxonomy Construction
Mihai Surdeanu | John Hungerford | Yee Seng Chan | Jessica MacBride | Benjamin Gyori | Andrew Zupon | Zheng Tang | Haoling Qiu | Bonan Min | Yan Zverev | Caitlin Hilverman | Max Thomas | Walter Andrews | Keith Alcock | Zeyu Zhang | Michael Reynolds | Steven Bethard | Rebecca Sharp | Egoitz Laparra
Proceedings of the Second Workshop on Bridging Human--Computer Interaction and Natural Language Processing

An existing domain taxonomy for normalizing content is often assumed when discussing approaches to information extraction, yet often in real-world scenarios there is none.When one does exist, as the information needs shift, it must be continually extended. This is a slow and tedious task, and one which does not scale well.Here we propose an interactive tool that allows a taxonomy to be built or extended rapidly and with a human in the loop to control precision. We apply insights from text summarization and information extraction to reduce the search space dramatically, then leverage modern pretrained language models to perform contextualized clustering of the remaining concepts to yield candidate nodes for the user to review. We show this allows a user to consider as many as 200 taxonomy concept candidates an hour, to quickly build or extend a taxonomy to better fit information needs.

pdf bib
A Human-machine Interface for Few-shot Rule Synthesis for Information Extraction
Robert Vacareanu | George C.G. Barbosa | Enrique Noriega-Atala | Gus Hahn-Powell | Rebecca Sharp | Marco A. Valenzuela-Escárcega | Mihai Surdeanu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: System Demonstrations

We propose a system that assists a user in constructing transparent information extraction models, consisting of patterns (or rules) written in a declarative language, through program synthesis.Users of our system can specify their requirements through the use of examples,which are collected with a search interface.The rule-synthesis system proposes rule candidates and the results of applying them on a textual corpus; the user has the option to accept the candidate, request another option, or adjust the examples provided to the system.Through an interactive evaluation, we show that our approach generates high-precision rules even in a 1-shot setting. On a second evaluation on a widely-used relation extraction dataset (TACRED), our method generates rules that outperform considerably manually written patterns.Our code, demo, and documentation is available at


pdf bib
Me, myself, and ire: Effects of automatic transcription quality on emotion, sarcasm, and personality detection
John Culnan | Seongjin Park | Meghavarshini Krishnaswamy | Rebecca Sharp
Proceedings of the Eleventh Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

In deployment, systems that use speech as input must make use of automated transcriptions. Yet, typically when these systems are evaluated, gold transcriptions are assumed. We explicitly examine the impact of transcription errors on the downstream performance of a multi-modal system on three related tasks from three datasets: emotion, sarcasm, and personality detection. We include three separate transcription tools and show that while all automated transcriptions propagate errors that substantially impact downstream performance, the open-source tools fair worse than the paid tool, though not always straightforwardly, and word error rates do not correlate well with downstream performance. We further find that the inclusion of audio features partially mitigates transcription errors, but that a naive usage of a multi-task setup does not.


pdf bib
An Unsupervised Method for Learning Representations of Multi-word Expressions for Semantic Classification
Robert Vacareanu | Marco A. Valenzuela-Escárcega | Rebecca Sharp | Mihai Surdeanu
Proceedings of the 28th International Conference on Computational Linguistics

This paper explores an unsupervised approach to learning a compositional representation function for multi-word expressions (MWEs), and evaluates it on the Tratz dataset, which associates two-word expressions with the semantic relation between the compound constituents (e.g. the label employer is associated with the noun compound government agency) (Tratz, 2011). The composition function is based on recurrent neural networks, and is trained using the Skip-Gram objective to predict the words in the context of MWEs. Thus our approach can naturally leverage large unlabeled text sources. Further, our method can make use of provided MWEs when available, but can also function as a completely unsupervised algorithm, using MWE boundaries predicted by a single, domain-agnostic part-of-speech pattern. With pre-defined MWE boundaries, our method outperforms the previous state-of-the-art performance on the coarse-grained evaluation of the Tratz dataset (Tratz, 2011), with an F1 score of 50.4%. The unsupervised version of our method approaches the performance of the supervised one, and even outperforms it in some configurations.

pdf bib
MathAlign: Linking Formula Identifiers to their Contextual Natural Language Descriptions
Maria Alexeeva | Rebecca Sharp | Marco A. Valenzuela-Escárcega | Jennifer Kadowaki | Adarsh Pyarelal | Clayton Morrison
Proceedings of the 12th Language Resources and Evaluation Conference

Extending machine reading approaches to extract mathematical concepts and their descriptions is useful for a variety of tasks, ranging from mathematical information retrieval to increasing accessibility of scientific documents for the visually impaired. This entails segmenting mathematical formulae into identifiers and linking them to their natural language descriptions. We propose a rule-based approach for this task, which extracts LaTeX representations of formula identifiers and links them to their in-text descriptions, given only the original PDF and the location of the formula of interest. We also present a novel evaluation dataset for this task, as well as the tool used to create it.

pdf bib
Towards the Necessity for Debiasing Natural Language Inference Datasets
Mithun Paul Panenghat | Sandeep Suntwal | Faiz Rafique | Rebecca Sharp | Mihai Surdeanu
Proceedings of the 12th Language Resources and Evaluation Conference

Modeling natural language inference is a challenging task. With large annotated data sets available it has now become feasible to train complex neural network based inference methods which achieve state of the art performance. However, it has been shown that these models also learn from the subtle biases inherent in these datasets (CITATION). In this work we explore two techniques for delexicalization that modify the datasets in such a way that we can control the importance that neural-network based methods place on lexical entities. We demonstrate that the proposed methods not only maintain the performance in-domain but also improve performance in some out-of-domain settings. For example, when using the delexicalized version of the FEVER dataset, the in-domain performance of a state of the art neural network method dropped only by 1.12% while its out-of-domain performance on the FNC dataset improved by 4.63%. We release the delexicalized versions of three common datasets used in natural language inference. These datasets are delexicalized using two methods: one which replaces the lexical entities in an overlap-aware manner, and a second, which additionally incorporates semantic lifting of nouns and verbs to their WordNet hypernym synsets


pdf bib
Enabling Search and Collaborative Assembly of Causal Interactions Extracted from Multilingual and Multi-domain Free Text
George C. G. Barbosa | Zechy Wong | Gus Hahn-Powell | Dane Bell | Rebecca Sharp | Marco A. Valenzuela-Escárcega | Mihai Surdeanu
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)

Many of the most pressing current research problems (e.g., public health, food security, or climate change) require multi-disciplinary collaborations. In order to facilitate this process, we propose a system that incorporates multi-domain extractions of causal interactions into a single searchable knowledge graph. Our system enables users to search iteratively over direct and indirect connections in this knowledge graph, and collaboratively build causal models in real time. To enable the aggregation of causal information from multiple languages, we extend an open-domain machine reader to Portuguese. The new Portuguese reader extracts over 600 thousand causal statements from 120 thousand Portuguese publications with a precision of 62%, which demonstrates the value of mining multilingual scientific information.

pdf bib
Eidos, INDRA, & Delphi: From Free Text to Executable Causal Models
Rebecca Sharp | Adarsh Pyarelal | Benjamin Gyori | Keith Alcock | Egoitz Laparra | Marco A. Valenzuela-Escárcega | Ajay Nagesh | Vikas Yadav | John Bachman | Zheng Tang | Heather Lent | Fan Luo | Mithun Paul | Steven Bethard | Kobus Barnard | Clayton Morrison | Mihai Surdeanu
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)

Building causal models of complicated phenomena such as food insecurity is currently a slow and labor-intensive manual process. In this paper, we introduce an approach that builds executable probabilistic models from raw, free text. The proposed approach is implemented through three systems: Eidos, INDRA, and Delphi. Eidos is an open-domain machine reading system designed to extract causal relations from natural language. It is rule-based, allowing for rapid domain transfer, customizability, and interpretability. INDRA aggregates multiple sources of causal information and performs assembly to create a coherent knowledge base and assess its reliability. This assembled knowledge serves as the starting point for modeling. Delphi is a modeling framework that assembles quantified causal fragments and their contexts into executable probabilistic models that respect the semantics of the original text, and can be used to support decision making.

pdf bib
On the Importance of Delexicalization for Fact Verification
Sandeep Suntwal | Mithun Paul | Rebecca Sharp | Mihai Surdeanu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

While neural networks produce state-of-the-art performance in many NLP tasks, they generally learn from lexical information, which may transfer poorly between domains. Here, we investigate the importance that a model assigns to various aspects of data while learning and making predictions, specifically, in a recognizing textual entailment (RTE) task. By inspecting the attention weights assigned by the model, we confirm that most of the weights are assigned to noun phrases. To mitigate this dependence on lexicalized information, we experiment with two strategies of masking. First, we replace named entities with their corresponding semantic tags along with a unique identifier to indicate lexical overlap between claim and evidence. Second, we similarly replace other word classes in the sentence (nouns, verbs, adjectives, and adverbs) with their super sense tags (Ciaramita and Johnson, 2003). Our results show that, while performance on the in-domain dataset remains on par with that of the model trained on fully lexicalized data, it improves considerably when tested out of domain. For example, the performance of a state-of-the-art RTE model trained on the masked Fake News Challenge (Pomerleau and Rao, 2017) data and evaluated on Fact Extraction and Verification (Thorne et al., 2018) data improved by over 10% in accuracy score compared to the fully lexicalized model.

pdf bib
Semi-Supervised Teacher-Student Architecture for Relation Extraction
Fan Luo | Ajay Nagesh | Rebecca Sharp | Mihai Surdeanu
Proceedings of the Third Workshop on Structured Prediction for NLP

Generating a large amount of training data for information extraction (IE) is either costly (if annotations are created manually), or runs the risk of introducing noisy instances (if distant supervision is used). On the other hand, semi-supervised learning (SSL) is a cost-efficient solution to combat lack of training data. In this paper, we adapt Mean Teacher (Tarvainen and Valpola, 2017), a denoising SSL framework to extract semantic relations between pairs of entities. We explore the sweet spot of amount of supervision required for good performance on this binary relation extraction task. Additionally, different syntax representations are incorporated into our models to enhance the learned representation of sentences. We evaluate our approach on the Google-IISc Distant Supervision (GDS) dataset, which removes test data noise present in all previous distance supervision datasets, which makes it a reliable evaluation benchmark (Jat et al., 2017). Our results show that the SSL Mean Teacher approach nears the performance of fully-supervised approaches even with only 10% of the labeled corpus. Further, the syntax-aware model outperforms other syntax-free approaches across all levels of supervision.


pdf bib
A mostly unlexicalized model for recognizing textual entailment
Mithun Paul | Rebecca Sharp | Mihai Surdeanu
Proceedings of the First Workshop on Fact Extraction and VERification (FEVER)

Many approaches to automatically recognizing entailment relations have employed classifiers over hand engineered lexicalized features, or deep learning models that implicitly capture lexicalization through word embeddings. This reliance on lexicalization may complicate the adaptation of these tools between domains. For example, such a system trained in the news domain may learn that a sentence like “Palestinians recognize Texas as part of Mexico” tends to be unsupported, but this fact (and its corresponding lexicalized cues) have no value in, say, a scientific domain. To mitigate this dependence on lexicalized information, in this paper we propose a model that reads two sentences, from any given domain, to determine entailment without using lexicalized features. Instead our model relies on features that are either unlexicalized or are domain independent such as proportion of negated verbs, antonyms, or noun overlap. In its current implementation, this model does not perform well on the FEVER dataset, due to two reasons. First, for the information retrieval portion of the task we used the baseline system provided, since this was not the aim of our project. Second, this is work in progress and we still are in the process of identifying more features and gradually increasing the accuracy of our model. In the end, we hope to build a generic end-to-end classifier, which can be used in a domain outside the one in which it was trained, with no or minimal re-training.

pdf bib
Deep Affix Features Improve Neural Named Entity Recognizers
Vikas Yadav | Rebecca Sharp | Steven Bethard
Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics

We propose a practical model for named entity recognition (NER) that combines word and character-level information with a specific learned representation of the prefixes and suffixes of the word. We apply this approach to multilingual and multi-domain NER and show that it achieves state of the art results on the CoNLL 2002 Spanish and Dutch and CoNLL 2003 German NER datasets, consistently achieving 1.5-2.3 percent over the state of the art without relying on any dictionary features. Additionally, we show improvement on SemEval 2013 task 9.1 DrugNER, achieving state of the art results on the MedLine dataset and the second best results overall (-1.3% from state of the art). We also establish a new benchmark on the I2B2 2010 Clinical NER dataset with 84.70 F-score.

pdf bib
Grounding Gradable Adjectives through Crowdsourcing
Rebecca Sharp | Mithun Paul | Ajay Nagesh | Dane Bell | Mihai Surdeanu
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)


pdf bib
Tell Me Why: Using Question Answering as Distant Supervision for Answer Justification
Rebecca Sharp | Mihai Surdeanu | Peter Jansen | Marco A. Valenzuela-Escárcega | Peter Clark | Michael Hammond
Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)

For many applications of question answering (QA), being able to explain why a given model chose an answer is critical. However, the lack of labeled data for answer justifications makes learning this difficult and expensive. Here we propose an approach that uses answer ranking as distant supervision for learning how to select informative justifications, where justifications serve as inferential connections between the question and the correct answer while often containing little lexical overlap with either. We propose a neural network architecture for QA that reranks answer justifications as an intermediate (and human-interpretable) step in answer selection. Our approach is informed by a set of features designed to combine both learned representations and explicit features to capture the connection between questions, answers, and answer justifications. We show that with this end-to-end approach we are able to significantly improve upon a strong IR baseline in both justification ranking (+9% rated highly relevant) and answer selection (+6% P@1).

pdf bib
Framing QA as Building and Ranking Intersentence Answer Justifications
Peter Jansen | Rebecca Sharp | Mihai Surdeanu | Peter Clark
Computational Linguistics, Volume 43, Issue 2 - June 2017

We propose a question answering (QA) approach for standardized science exams that both identifies correct answers and produces compelling human-readable justifications for why those answers are correct. Our method first identifies the actual information needed in a question using psycholinguistic concreteness norms, then uses this information need to construct answer justifications by aggregating multiple sentences from different knowledge bases using syntactic and lexical information. We then jointly rank answers and their justifications using a reranking perceptron that treats justification quality as a latent variable. We evaluate our method on 1,000 multiple-choice questions from elementary school science exams, and empirically demonstrate that it performs better than several strong baselines, including neural network approaches. Our best configuration answers 44% of the questions correctly, where the top justifications for 57% of these correct answers contain a compelling human-readable justification that explains the inference required to arrive at the correct answer. We include a detailed characterization of the justification quality for both our method and a strong baseline, and show that information aggregation is key to addressing the information need in complex questions.


pdf bib
Creating Causal Embeddings for Question Answering with Minimal Supervision
Rebecca Sharp | Mihai Surdeanu | Peter Jansen | Peter Clark | Michael Hammond
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing


pdf bib
Spinning Straw into Gold: Using Free Text to Train Monolingual Alignment Models for Non-factoid Question Answering
Rebecca Sharp | Peter Jansen | Mihai Surdeanu | Peter Clark
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies