Revanth Gangi Reddy


2022

pdf bib
Towards Robust Neural Retrieval with Source Domain Synthetic Pre-Finetuning
Revanth Gangi Reddy | Vikas Yadav | Md Arafat Sultan | Martin Franz | Vittorio Castelli | Heng Ji | Avirup Sil
Proceedings of the 29th International Conference on Computational Linguistics

Research on neural IR has so far been focused primarily on standard supervised learning settings, where it outperforms traditional term matching baselines. Many practical use cases of such models, however, may involve previously unseen target domains. In this paper, we propose to improve the out-of-domain generalization of Dense Passage Retrieval (DPR) - a popular choice for neural IR - through synthetic data augmentation only in the source domain. We empirically show that pre-finetuning DPR with additional synthetic data in its source domain (Wikipedia), which we generate using a fine-tuned sequence-to-sequence generator, can be a low-cost yet effective first step towards its generalization. Across five different test sets, our augmented model shows more robust performance than DPR in both in-domain and zero-shot out-of-domain evaluation.

pdf bib
A Zero-Shot Claim Detection Framework Using Question Answering
Revanth Gangi Reddy | Sai Chetan Chinthakindi | Yi R. Fung | Kevin Small | Heng Ji
Proceedings of the 29th International Conference on Computational Linguistics

In recent years, there has been an increasing interest in claim detection as an important building block for misinformation detection. This involves detecting more fine-grained attributes relating to the claim, such as the claimer, claim topic, claim object pertaining to the topic, etc. Yet, a notable bottleneck of existing claim detection approaches is their portability to emerging events and low-resource training data settings. In this regard, we propose a fine-grained claim detection framework that leverages zero-shot Question Answering (QA) using directed questions to solve a diverse set of sub-tasks such as topic filtering, claim object detection, and claimer detection. We show that our approach significantly outperforms various zero-shot, few-shot and task-specific baselines on the NewsClaims benchmark (Reddy et al., 2021).

pdf bib
COVID-19 Claim Radar: A Structured Claim Extraction and Tracking System
Manling Li | Revanth Gangi Reddy | Ziqi Wang | Yi-shyuan Chiang | Tuan Lai | Pengfei Yu | Zixuan Zhang | Heng Ji
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

To tackle the challenge of accurate and timely communication regarding the COVID-19 pandemic, we present a COVID-19 Claim Radar to automatically extract supporting and refuting claims on a daily basis. We provide a comprehensive structured view of claims, including rich claim attributes (such as claimers and claimer affiliations) and associated knowledge elements as claim semantics (such as events, relations and entities), enabling users to explore equivalent, refuting, or supporting claims with structural evidence, such as shared claimers, similar centroid events and arguments. In order to consolidate claim structures at the corpus-level, we leverage Wikidata as the hub to merge coreferential knowledge elements. The system automatically provides users a comprehensive exposure to COVID-19 related claims, their importance, and their interconnections. The system is publicly available at GitHub and DockerHub, with complete documentation.

2021

pdf bib
Leveraging Abstract Meaning Representation for Knowledge Base Question Answering
Pavan Kapanipathi | Ibrahim Abdelaziz | Srinivas Ravishankar | Salim Roukos | Alexander Gray | Ramón Fernandez Astudillo | Maria Chang | Cristina Cornelio | Saswati Dana | Achille Fokoue | Dinesh Garg | Alfio Gliozzo | Sairam Gurajada | Hima Karanam | Naweed Khan | Dinesh Khandelwal | Young-Suk Lee | Yunyao Li | Francois Luus | Ndivhuwo Makondo | Nandana Mihindukulasooriya | Tahira Naseem | Sumit Neelam | Lucian Popa | Revanth Gangi Reddy | Ryan Riegel | Gaetano Rossiello | Udit Sharma | G P Shrivatsa Bhargav | Mo Yu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
InfoSurgeon: Cross-Media Fine-grained Information Consistency Checking for Fake News Detection
Yi Fung | Christopher Thomas | Revanth Gangi Reddy | Sandeep Polisetty | Heng Ji | Shih-Fu Chang | Kathleen McKeown | Mohit Bansal | Avi Sil
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

To defend against machine-generated fake news, an effective mechanism is urgently needed. We contribute a novel benchmark for fake news detection at the knowledge element level, as well as a solution for this task which incorporates cross-media consistency checking to detect the fine-grained knowledge elements making news articles misinformative. Due to training data scarcity, we also formulate a novel data synthesis method by manipulating knowledge elements within the knowledge graph to generate noisy training data with specific, hard to detect, known inconsistencies. Our detection approach outperforms the state-of-the-art (up to 16.8% accuracy gain), and more critically, yields fine-grained explanations.

2020

pdf bib
Answer Span Correction in Machine Reading Comprehension
Revanth Gangi Reddy | Md Arafat Sultan | Efsun Sarioglu Kayi | Rong Zhang | Vittorio Castelli | Avi Sil
Findings of the Association for Computational Linguistics: EMNLP 2020

Answer validation in machine reading comprehension (MRC) consists of verifying an extracted answer against an input context and question pair. Previous work has looked at re-assessing the “answerability” of the question given the extracted answer. Here we address a different problem: the tendency of existing MRC systems to produce partially correct answers when presented with answerable questions. We explore the nature of such errors and propose a post-processing correction method that yields statistically significant performance improvements over state-of-the-art MRC systems in both monolingual and multilingual evaluation.

pdf bib
Pushing the Limits of AMR Parsing with Self-Learning
Young-Suk Lee | Ramón Fernandez Astudillo | Tahira Naseem | Revanth Gangi Reddy | Radu Florian | Salim Roukos
Findings of the Association for Computational Linguistics: EMNLP 2020

Abstract Meaning Representation (AMR) parsing has experienced a notable growth in performance in the last two years, due both to the impact of transfer learning and the development of novel architectures specific to AMR. At the same time, self-learning techniques have helped push the performance boundaries of other natural language processing applications, such as machine translation or question answering. In this paper, we explore different ways in which trained models can be applied to improve AMR parsing performance, including generation of synthetic text and AMR annotations as well as refinement of actions oracle. We show that, without any additional human annotations, these techniques improve an already performant parser and achieve state-of-the-art results on AMR 1.0 and AMR 2.0.

pdf bib
Multi-Stage Pre-training for Low-Resource Domain Adaptation
Rong Zhang | Revanth Gangi Reddy | Md Arafat Sultan | Vittorio Castelli | Anthony Ferritto | Radu Florian | Efsun Sarioglu Kayi | Salim Roukos | Avi Sil | Todd Ward
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Transfer learning techniques are particularly useful for NLP tasks where a sizable amount of high-quality annotated data is difficult to obtain. Current approaches directly adapt a pretrained language model (LM) on in-domain text before fine-tuning to downstream tasks. We show that extending the vocabulary of the LM with domain-specific terms leads to further gains. To a bigger effect, we utilize structure in the unlabeled data to create auxiliary synthetic tasks, which helps the LM transfer to downstream tasks. We apply these approaches incrementally on a pretrained Roberta-large LM and show considerable performance gain on three tasks in the IT domain: Extractive Reading Comprehension, Document Ranking and Duplicate Question Detection.

2019

pdf bib
Multi-Level Memory for Task Oriented Dialogs
Revanth Gangi Reddy | Danish Contractor | Dinesh Raghu | Sachindra Joshi
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Recent end-to-end task oriented dialog systems use memory architectures to incorporate external knowledge in their dialogs. Current work makes simplifying assumptions about the structure of the knowledge base, such as the use of triples to represent knowledge, and combines dialog utterances (context) as well as knowledge base (KB) results as part of the same memory. This causes an explosion in the memory size, and makes the reasoning over memory harder. In addition, such a memory design forces hierarchical properties of the data to be fit into a triple structure of memory. This requires the memory reader to infer relationships across otherwise connected attributes. In this paper we relax the strong assumptions made by existing architectures and separate memories used for modeling dialog context and KB results. Instead of using triples to store KB results, we introduce a novel multi-level memory architecture consisting of cells for each query and their corresponding results. The multi-level memory first addresses queries, followed by results and finally each key-value pair within a result. We conduct detailed experiments on three publicly available task oriented dialog data sets and we find that our method conclusively outperforms current state-of-the-art models. We report a 15-25% increase in both entity F1 and BLEU scores.