Richárd Csáky

Also published as: Richard Csaky


pdf bib
The Gutenberg Dialogue Dataset
Richard Csaky | Gábor Recski
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Large datasets are essential for neural modeling of many NLP tasks. Current publicly available open-domain dialogue datasets offer a trade-off between quality (e.g., DailyDialog) and size (e.g., Opensubtitles). We narrow this gap by building a high-quality dataset of 14.8M utterances in English, and smaller datasets in German, Dutch, Spanish, Portuguese, Italian, and Hungarian. We extract and process dialogues from public-domain books made available by Project Gutenberg. We describe our dialogue extraction pipeline, analyze the effects of the various heuristics used, and present an error analysis of extracted dialogues. Finally, we conduct experiments showing that better response quality can be achieved in zero-shot and finetuning settings by training on our data than on the larger but much noisier Opensubtitles dataset. Our open-source pipeline ( can be extended to further languages with little additional effort. Researchers can also build their versions of existing datasets by adjusting various trade-off parameters.


pdf bib
Improving Neural Conversational Models with Entropy-Based Data Filtering
Richárd Csáky | Patrik Purgai | Gábor Recski
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Current neural network-based conversational models lack diversity and generate boring responses to open-ended utterances. Priors such as persona, emotion, or topic provide additional information to dialog models to aid response generation, but annotating a dataset with priors is expensive and such annotations are rarely available. While previous methods for improving the quality of open-domain response generation focused on either the underlying model or the training objective, we present a method of filtering dialog datasets by removing generic utterances from training data using a simple entropy-based approach that does not require human supervision. We conduct extensive experiments with different variations of our method, and compare dialog models across 17 evaluation metrics to show that training on datasets filtered this way results in better conversational quality as chatbots learn to output more diverse responses.