The scarcity of comprehensive up-to-date studies on evaluation metrics for text summarization and the lack of consensus regarding evaluation protocols continue to inhibit progress. We address the existing shortcomings of summarization evaluation methods along five dimensions: 1) we re-evaluate 14 automatic evaluation metrics in a comprehensive and consistent fashion using neural summarization model outputs along with expert and crowd-sourced human annotations; 2) we consistently benchmark 23 recent summarization models using the aforementioned automatic evaluation metrics; 3) we assemble the largest collection of summaries generated by models trained on the CNN/DailyMail news dataset and share it in a unified format; 4) we implement and share a toolkit that provides an extensible and unified API for evaluating summarization models across a broad range of automatic metrics; and 5) we assemble and share the largest and most diverse, in terms of model types, collection of human judgments of model-generated summaries on the CNN/Daily Mail dataset annotated by both expert judges and crowd-source workers. We hope that this work will help promote a more complete evaluation protocol for text summarization as well as advance research in developing evaluation metrics that better correlate with human judgments.
We present DART, an open domain structured DAta Record to Text generation dataset with over 82k instances (DARTs). Data-to-text annotations can be a costly process, especially when dealing with tables which are the major source of structured data and contain nontrivial structures. To this end, we propose a procedure of extracting semantic triples from tables that encodes their structures by exploiting the semantic dependencies among table headers and the table title. Our dataset construction framework effectively merged heterogeneous sources from open domain semantic parsing and spoken dialogue systems by utilizing techniques including tree ontology annotation, question-answer pair to declarative sentence conversion, and predicate unification, all with minimum post-editing. We present systematic evaluation on DART as well as new state-of-the-art results on WebNLG 2017 to show that DART (1) poses new challenges to existing data-to-text datasets and (2) facilitates out-of-domain generalization. Our data and code can be found at https://github.com/Yale-LILY/dart.
Dialog state tracking (DST) is a core component in task-oriented dialog systems. Existing approaches for DST mainly fall into one of two categories, namely, ontology-based and ontology-free methods. An ontology-based method selects a value from a candidate-value list for each target slot, while an ontology-free method extracts spans from dialog contexts. Recent work introduced a BERT-based model to strike a balance between the two methods by pre-defining categorical and non-categorical slots. However, it is not clear enough which slots are better handled by either of the two slot types, and the way to use the pre-trained model has not been well investigated. In this paper, we propose a simple yet effective dual-strategy model for DST, by adapting a single BERT-style reading comprehension model to jointly handle both the categorical and non-categorical slots. Our experiments on the MultiWOZ datasets show that our method significantly outperforms the BERT-based counterpart, finding that the key is a deep interaction between the domain-slot and context information. When evaluated on noisy (MultiWOZ 2.0) and cleaner (MultiWOZ 2.1) settings, our method performs competitively and robustly across the two different settings. Our method sets the new state of the art in the noisy setting, while performing more robustly than the best model in the cleaner setting. We also conduct a comprehensive error analysis on the dataset, including the effects of the dual strategy for each slot, to facilitate future research.
The goal of conversational machine reading is to answer user questions given a knowledge base text which may require asking clarification questions. Existing approaches are limited in their decision making due to struggles in extracting question-related rules and reasoning about them. In this paper, we present a new framework of conversational machine reading that comprises a novel Explicit Memory Tracker (EMT) to track whether conditions listed in the rule text have already been satisfied to make a decision. Moreover, our framework generates clarification questions by adopting a coarse-to-fine reasoning strategy, utilizing sentence-level entailment scores to weight token-level distributions. On the ShARC benchmark (blind, held-out) testset, EMT achieves new state-of-the-art results of 74.6% micro-averaged decision accuracy and 49.5 BLEU4. We also show that EMT is more interpretable by visualizing the entailment-oriented reasoning process as the conversation flows. Code and models are released at https://github.com/Yifan-Gao/explicit_memory_tracker.
Training on only perfect Standard English corpora predisposes pre-trained neural networks to discriminate against minorities from non-standard linguistic backgrounds (e.g., African American Vernacular English, Colloquial Singapore English, etc.). We perturb the inflectional morphology of words to craft plausible and semantically similar adversarial examples that expose these biases in popular NLP models, e.g., BERT and Transformer, and show that adversarially fine-tuning them for a single epoch significantly improves robustness without sacrificing performance on clean data.
State-of-the-art models in NLP are now predominantly based on deep neural networks that are opaque in terms of how they come to make predictions. This limitation has increased interest in designing more interpretable deep models for NLP that reveal the ‘reasoning’ behind model outputs. But work in this direction has been conducted on different datasets and tasks with correspondingly unique aims and metrics; this makes it difficult to track progress. We propose the Evaluating Rationales And Simple English Reasoning (ERASER a benchmark to advance research on interpretable models in NLP. This benchmark comprises multiple datasets and tasks for which human annotations of “rationales” (supporting evidence) have been collected. We propose several metrics that aim to capture how well the rationales provided by models align with human rationales, and also how faithful these rationales are (i.e., the degree to which provided rationales influenced the corresponding predictions). Our hope is that releasing this benchmark facilitates progress on designing more interpretable NLP systems. The benchmark, code, and documentation are available at https://www.eraserbenchmark.com/
Neural networks lack the ability to reason about qualitative physics and so cannot generalize to scenarios and tasks unseen during training. We propose ESPRIT, a framework for commonsense reasoning about qualitative physics in natural language that generates interpretable descriptions of physical events. We use a two-step approach of first identifying the pivotal physical events in an environment and then generating natural language descriptions of those events using a data-to-text approach. Our framework learns to generate explanations of how the physical simulation will causally evolve so that an agent or a human can easily reason about a solution using those interpretable descriptions. Human evaluations indicate that ESPRIT produces crucial fine-grained details and has high coverage of physical concepts compared to even human annotations. Dataset, code and documentation are available at https://github.com/salesforce/esprit.
Natural language interfaces to databases(NLIDB) democratize end user access to relational data. Due to fundamental differences between natural language communication and programming, it is common for end users to issue questions that are ambiguous to the system or fall outside the semantic scope of its underlying query language. We present PHOTON, a robust, modular, cross-domain NLIDB that can flag natural language input to which a SQL mapping cannot be immediately determined. PHOTON consists of a strong neural semantic parser (63.2% structure accuracy on the Spider dev benchmark), a human-in-the-loop question corrector, a SQL executor and a response generator. The question corrector isa discriminative neural sequence editor which detects confusion span(s) in the input question and suggests rephrasing until a translatable input is given by the user or a maximum number of iterations are conducted. Experiments on simulated data show that the proposed method effectively improves the robustness of text-to-SQL system against untranslatable user input. The live demo of our system is available at http://www.naturalsql.com
Human-like chit-chat conversation requires agents to generate responses that are fluent, engaging and consistent. We propose Sketch- Fill-A-R, a framework that uses a persona-memory to generate chit-chat responses in three phases. First, it generates dynamic sketch responses with open slots. Second, it generates candidate responses by filling slots with parts of its stored persona traits. Lastly, it ranks and selects the final response via a language model score. Sketch-Fill-A-R outperforms a state-of-the-art baseline both quantitatively (10-point lower perplexity) and qualitatively (preferred by 55% in head-to-head single-turn studies and 20% higher in consistency in multi-turn user studies) on the Persona-Chat dataset. Finally, we extensively analyze Sketch-Fill-A-R’s responses and human feedback, and show it is more consistent and engaging by using more relevant responses and questions.
In this paper, we focus on generating training examples for few-shot intents in the realistic imbalanced scenario. To build connections between existing many-shot intents and few-shot intents, we consider an intent as a combination of a domain and an action, and propose a composed variational natural language generator (CLANG), a transformer-based conditional variational autoencoder. CLANG utilizes two latent variables to represent the utterances corresponding to two different independent parts (domain and action) in the intent, and the latent variables are composed together to generate natural examples. Additionally, to improve the generator learning, we adopt the contrastive regularization loss that contrasts the in-class with the out-of-class utterance generation given the intent. To evaluate the quality of the generated utterances, experiments are conducted on the generalized few-shot intent detection task. Empirical results show that our proposed model achieves state-of-the-art performances on two real-world intent detection datasets.
We present BRIDGE, a powerful sequential architecture for modeling dependencies between natural language questions and relational databases in cross-DB semantic parsing. BRIDGE represents the question and DB schema in a tagged sequence where a subset of the fields are augmented with cell values mentioned in the question. The hybrid sequence is encoded by BERT with minimal subsequent layers and the text-DB contextualization is realized via the fine-tuned deep attention in BERT. Combined with a pointer-generator decoder with schema-consistency driven search space pruning, BRIDGE attained state-of-the-art performance on the well-studied Spider benchmark (65.5% dev, 59.2% test), despite being much simpler than most recently proposed models for this task. Our analysis shows that BRIDGE effectively captures the desired cross-modal dependencies and has the potential to generalize to more text-DB related tasks. Our model implementation is available at https://github.com/salesforce/TabularSemanticParsing.
The underlying difference of linguistic patterns between general text and task-oriented dialogue makes existing pre-trained language models less useful in practice. In this work, we unify nine human-human and multi-turn task-oriented dialogue datasets for language modeling. To better model dialogue behavior during pre-training, we incorporate user and system tokens into the masked language modeling. We propose a contrastive objective function to simulate the response selection task. Our pre-trained task-oriented dialogue BERT (TOD-BERT) outperforms strong baselines like BERT on four downstream task-oriented dialogue applications, including intention recognition, dialogue state tracking, dialogue act prediction, and response selection. We also show that TOD-BERT has a stronger few-shot ability that can mitigate the data scarcity problem for task-oriented dialogue.
Intent detection is one of the core components of goal-oriented dialog systems, and detecting out-of-scope (OOS) intents is also a practically important skill. Few-shot learning is attracting much attention to mitigate data scarcity, but OOS detection becomes even more challenging. In this paper, we present a simple yet effective approach, discriminative nearest neighbor classification with deep self-attention. Unlike softmax classifiers, we leverage BERT-style pairwise encoding to train a binary classifier that estimates the best matched training example for a user input. We propose to boost the discriminative ability by transferring a natural language inference (NLI) model. Our extensive experiments on a large-scale multi-domain intent detection task show that our method achieves more stable and accurate in-domain and OOS detection accuracy than RoBERTa-based classifiers and embedding-based nearest neighbor approaches. More notably, the NLI transfer enables our 10-shot model to perform competitively with 50-shot or even full-shot classifiers, while we can keep the inference time constant by leveraging a faster embedding retrieval model.
The concept of Dialogue Act (DA) is universal across different task-oriented dialogue domains - the act of “request” carries the same speaker intention whether it is for restaurant reservation or flight booking. However, DA taggers trained on one domain do not generalize well to other domains, which leaves us with the expensive need for a large amount of annotated data in the target domain. In this work, we investigate how to better adapt DA taggers to desired target domains with only unlabeled data. We propose MaskAugment, a controllable mechanism that augments text input by leveraging the pre-trained Mask token from BERT model. Inspired by consistency regularization, we use MaskAugment to introduce an unsupervised teacher-student learning scheme to examine the domain adaptation of DA taggers. Our extensive experiments on the Simulated Dialogue (GSim) and Schema-Guided Dialogue (SGD) datasets show that MaskAugment is useful in improving the cross-domain generalization for DA tagging.
Pre-training in natural language processing makes it easier for an adversary with only query access to a victim model to reconstruct a local copy of the victim by training with gibberish input data paired with the victim’s labels for that data. We discover that this extraction process extends to local copies initialized from a pre-trained, multilingual model while the victim remains monolingual. The extracted model learns the task from the monolingual victim, but it generalizes far better than the victim to several other languages. This is done without ever showing the multilingual, extracted model a well-formed input in any of the languages for the target task. We also demonstrate that a few real examples can greatly improve performance, and we analyze how these results shed light on how such extraction methods succeed.
A standard way to address different NLP problems is by first constructing a problem-specific dataset, then building a model to fit this dataset. To build the ultimate artificial intelligence, we desire a single machine that can handle diverse new problems, for which task-specific annotations are limited. We bring up textual entailment as a unified solver for such NLP problems. However, current research of textual entailment has not spilled much ink on the following questions: (i) How well does a pretrained textual entailment system generalize across domains with only a handful of domain-specific examples? and (ii) When is it worth transforming an NLP task into textual entailment? We argue that the transforming is unnecessary if we can obtain rich annotations for this task. Textual entailment really matters particularly when the target NLP task has insufficient annotations. Universal NLP can be probably achieved through different routines. In this work, we introduce Universal Few-shot textual Entailment (UFO-Entail). We demonstrate that this framework enables a pretrained entailment model to work well on new entailment domains in a few-shot setting, and show its effectiveness as a unified solver for several downstream NLP tasks such as question answering and coreference resolution when the end-task annotations are limited.
The most common metrics for assessing summarization algorithms do not account for whether summaries are factually consistent with source documents. We propose a weakly-supervised, model-based approach for verifying factual consistency and identifying conflicts between source documents and generated summaries. Training data is generated by applying a series of rule-based transformations to the sentences of source documents. The factual consistency model is then trained jointly for three tasks: 1) predict whether each summary sentence is factually consistent or not, 2) in either case, extract a span in the source document to support this consistency prediction, 3) for each summary sentence that is deemed inconsistent, extract the inconsistent span from it. Transferring this model to summaries generated by several neural models reveals that this highly scalable approach outperforms previous models, including those trained with strong supervision using datasets from related domains, such as natural language inference and fact checking. Additionally, human evaluation shows that the auxiliary span extraction tasks provide useful assistance in the process of verifying factual consistency. We also release a manually annotated dataset for factual consistency verification, code for training data generation, and trained model weights at https://github.com/salesforce/factCC.
Over-dependence on domain ontology and lack of sharing knowledge across domains are two practical and yet less studied problems of dialogue state tracking. Existing approaches generally fall short when tracking unknown slot values during inference and often have difficulties in adapting to new domains. In this paper, we propose a Transferable Dialogue State Generator (TRADE) that generates dialogue states from utterances using copy mechanism, facilitating transfer when predicting (domain, slot, value) triplets not encountered during training. Our model is composed of an utterance encoder, a slot gate, and a state generator, which are shared across domains. Empirical results demonstrate that TRADE achieves state-of-the-art 48.62% joint goal accuracy for the five domains of MultiWOZ, a human-human dialogue dataset. In addition, we show the transferring ability by simulating zero-shot and few-shot dialogue state tracking for unseen domains. TRADE achieves 60.58% joint goal accuracy in one of the zero-shot domains, and is able to adapt to few-shot cases without forgetting already trained domains.
We present SParC, a dataset for cross-domainSemanticParsing inContext that consists of 4,298 coherent question sequences (12k+ individual questions annotated with SQL queries). It is obtained from controlled user interactions with 200 complex databases over 138 domains. We provide an in-depth analysis of SParC and show that it introduces new challenges compared to existing datasets. SParC demonstrates complex contextual dependencies, (2) has greater semantic diversity, and (3) requires generalization to unseen domains due to its cross-domain nature and the unseen databases at test time. We experiment with two state-of-the-art text-to-SQL models adapted to the context-dependent, cross-domain setup. The best model obtains an exact match accuracy of 20.2% over all questions and less than10% over all interaction sequences, indicating that the cross-domain setting and the con-textual phenomena of the dataset present significant challenges for future research. The dataset, baselines, and leaderboard are released at https://yale-lily.github.io/sparc.
Deep learning models perform poorly on tasks that require commonsense reasoning, which often necessitates some form of world-knowledge or reasoning over information not immediately present in the input. We collect human explanations for commonsense reasoning in the form of natural language sequences and highlighted annotations in a new dataset called Common Sense Explanations (CoS-E). We use CoS-E to train language models to automatically generate explanations that can be used during training and inference in a novel Commonsense Auto-Generated Explanation (CAGE) framework. CAGE improves the state-of-the-art by 10% on the challenging CommonsenseQA task. We further study commonsense reasoning in DNNs using both human and auto-generated explanations including transfer to out-of-domain tasks. Empirical results indicate that we can effectively leverage language models for commonsense reasoning.
Text summarization aims at compressing long documents into a shorter form that conveys the most important parts of the original document. Despite increased interest in the community and notable research effort, progress on benchmark datasets has stagnated. We critically evaluate key ingredients of the current research setup: datasets, evaluation metrics, and models, and highlight three primary shortcomings: 1) automatically collected datasets leave the task underconstrained and may contain noise detrimental to training and evaluation, 2) current evaluation protocol is weakly correlated with human judgment and does not account for important characteristics such as factual correctness, 3) models overfit to layout biases of current datasets and offer limited diversity in their outputs.
We propose weakly supervised language localization networks (WSLLN) to detect events in long, untrimmed videos given language queries. To learn the correspondence between visual segments and texts, most previous methods require temporal coordinates (start and end times) of events for training, which leads to high costs of annotation. WSLLN relieves the annotation burden by training with only video-sentence pairs without accessing to temporal locations of events. With a simple end-to-end structure, WSLLN measures segment-text consistency and conducts segment selection (conditioned on the text) simultaneously. Results from both are merged and optimized as a video-sentence matching problem. Experiments on ActivityNet Captions and DiDeMo demonstrate that WSLLN achieves state-of-the-art performance.
We present CoSQL, a corpus for building cross-domain, general-purpose database (DB) querying dialogue systems. It consists of 30k+ turns plus 10k+ annotated SQL queries, obtained from a Wizard-of-Oz (WOZ) collection of 3k dialogues querying 200 complex DBs spanning 138 domains. Each dialogue simulates a real-world DB query scenario with a crowd worker as a user exploring the DB and a SQL expert retrieving answers with SQL, clarifying ambiguous questions, or otherwise informing of unanswerable questions. When user questions are answerable by SQL, the expert describes the SQL and execution results to the user, hence maintaining a natural interaction flow. CoSQL introduces new challenges compared to existing task-oriented dialogue datasets: (1) the dialogue states are grounded in SQL, a domain-independent executable representation, instead of domain-specific slot value pairs, and (2) because testing is done on unseen databases, success requires generalizing to new domains. CoSQL includes three tasks: SQL-grounded dialogue state tracking, response generation from query results, and user dialogue act prediction. We evaluate a set of strong baselines for each task and show that CoSQL presents significant challenges for future research. The dataset, baselines, and leaderboard will be released at https://yale-lily.github.io/cosql.
We focus on the cross-domain context-dependent text-to-SQL generation task. Based on the observation that adjacent natural language questions are often linguistically dependent and their corresponding SQL queries tend to overlap, we utilize the interaction history by editing the previous predicted query to improve the generation quality. Our editing mechanism views SQL as sequences and reuses generation results at the token level in a simple manner. It is flexible to change individual tokens and robust to error propagation. Furthermore, to deal with complex table structures in different domains, we employ an utterance-table encoder and a table-aware decoder to incorporate the context of the user utterance and the table schema. We evaluate our approach on the SParC dataset and demonstrate the benefit of editing compared with the state-of-the-art baselines which generate SQL from scratch. Our code is available at https://github.com/ryanzhumich/sparc_atis_pytorch.
Multilingual transfer learning can benefit both high- and low-resource languages, but the source of these improvements is not well understood. Cananical Correlation Analysis (CCA) of the internal representations of a pre- trained, multilingual BERT model reveals that the model partitions representations for each language rather than using a common, shared, interlingual space. This effect is magnified at deeper layers, suggesting that the model does not progressively abstract semantic con- tent while disregarding languages. Hierarchical clustering based on the CCA similarity scores between languages reveals a tree structure that mirrors the phylogenetic trees hand- designed by linguists. The subword tokenization employed by BERT provides a stronger bias towards such structure than character- and word-level tokenizations. We release a subset of the XNLI dataset translated into an additional 14 languages at https://www.github.com/salesforce/xnli_extension to assist further research into multilingual representations.
This paper presents a high-quality multilingual dataset for the documentation domain to advance research on localization of structured text. Unlike widely-used datasets for translation of plain text, we collect XML-structured parallel text segments from the online documentation for an enterprise software platform. These Web pages have been professionally translated from English into 16 languages and maintained by domain experts, and around 100,000 text segments are available for each language pair. We build and evaluate translation models for seven target languages from English, with several different copy mechanisms and an XML-constrained beam search. We also experiment with a non-English pair to show that our dataset has the potential to explicitly enable 17 × 16 translation settings. Our experiments show that learning to translate with the XML tags improves translation accuracy, and the beam search accurately generates XML structures. We also discuss trade-offs of using the copy mechanisms by focusing on translation of numerical words and named entities. We further provide a detailed human analysis of gaps between the model output and human translations for real-world applications, including suitability for post-editing.
Dialogue state tracking, which estimates user goals and requests given the dialogue context, is an essential part of task-oriented dialogue systems. In this paper, we propose the Global-Locally Self-Attentive Dialogue State Tracker (GLAD), which learns representations of the user utterance and previous system actions with global-local modules. Our model uses global modules to shares parameters between estimators for different types (called slots) of dialogue states, and uses local modules to learn slot-specific features. We show that this significantly improves tracking of rare states. GLAD obtains 88.3% joint goal accuracy and 96.4% request accuracy on the WoZ state tracking task, outperforming prior work by 3.9% and 4.8%. On the DSTC2 task, our model obtains 74.7% joint goal accuracy and 97.3% request accuracy, outperforming prior work by 1.3% and 0.8%
Neural models for question answering (QA) over documents have achieved significant performance improvements. Although effective, these models do not scale to large corpora due to their complex modeling of interactions between the document and the question. Moreover, recent work has shown that such models are sensitive to adversarial inputs. In this paper, we study the minimal context required to answer the question, and find that most questions in existing datasets can be answered with a small set of sentences. Inspired by this observation, we propose a simple sentence selector to select the minimal set of sentences to feed into the QA model. Our overall system achieves significant reductions in training (up to 15 times) and inference times (up to 13 times), with accuracy comparable to or better than the state-of-the-art on SQuAD, NewsQA, TriviaQA and SQuAD-Open. Furthermore, our experimental results and analyses show that our approach is more robust to adversarial inputs.
Abstractive text summarization aims to shorten long text documents into a human readable form that contains the most important facts from the original document. However, the level of actual abstraction as measured by novel phrases that do not appear in the source document remains low in existing approaches. We propose two techniques to improve the level of abstraction of generated summaries. First, we decompose the decoder into a contextual network that retrieves relevant parts of the source document, and a pretrained language model that incorporates prior knowledge about language generation. Second, we propose a novelty metric that is optimized directly through policy learning to encourage the generation of novel phrases. Our model achieves results comparable to state-of-the-art models, as determined by ROUGE scores and human evaluations, while achieving a significantly higher level of abstraction as measured by n-gram overlap with the source document.
Multi-hop reasoning is an effective approach for query answering (QA) over incomplete knowledge graphs (KGs). The problem can be formulated in a reinforcement learning (RL) setup, where a policy-based agent sequentially extends its inference path until it reaches a target. However, in an incomplete KG environment, the agent receives low-quality rewards corrupted by false negatives in the training data, which harms generalization at test time. Furthermore, since no golden action sequence is used for training, the agent can be misled by spurious search trajectories that incidentally lead to the correct answer. We propose two modeling advances to address both issues: (1) we reduce the impact of false negative supervision by adopting a pretrained one-hop embedding model to estimate the reward of unobserved facts; (2) we counter the sensitivity to spurious paths of on-policy RL by forcing the agent to explore a diverse set of paths using randomly generated edge masks. Our approach significantly improves over existing path-based KGQA models on several benchmark datasets and is comparable or better than embedding-based models.
Transfer and multi-task learning have traditionally focused on either a single source-target pair or very few, similar tasks. Ideally, the linguistic levels of morphology, syntax and semantics would benefit each other by being trained in a single model. We introduce a joint many-task model together with a strategy for successively growing its depth to solve increasingly complex tasks. Higher layers include shortcut connections to lower-level task predictions to reflect linguistic hierarchies. We use a simple regularization term to allow for optimizing all model weights to improve one task’s loss without exhibiting catastrophic interference of the other tasks. Our single end-to-end model obtains state-of-the-art or competitive results on five different tasks from tagging, parsing, relatedness, and entailment tasks.
Many recent advances in deep learning for natural language processing have come at increasing computational cost, but the power of these state-of-the-art models is not needed for every example in a dataset. We demonstrate two approaches to reducing unnecessary computation in cases where a fast but weak baseline classier and a stronger, slower model are both available. Applying an AUC-based metric to the task of sentiment classification, we find significant efficiency gains with both a probability-threshold method for reducing computational cost and one that uses a secondary decision network.
Building models that take advantage of the hierarchical structure of language without a priori annotation is a longstanding goal in natural language processing. We introduce such a model for the task of machine translation, pairing a recurrent neural network grammar encoder with a novel attentional RNNG decoder and applying policy gradient reinforcement learning to induce unsupervised tree structures on both the source and target. When trained on character-level datasets with no explicit segmentation or parse annotation, the model learns a plausible segmentation and shallow parse, obtaining performance close to an attentional baseline.
Previous work on Recursive Neural Networks (RNNs) shows that these models can produce compositional feature vectors for accurately representing and classifying sentences or images. However, the sentence vectors of previous models cannot accurately represent visually grounded meaning. We introduce the DT-RNN model which uses dependency trees to embed sentences into a vector space in order to retrieve images that are described by those sentences. Unlike previous RNN-based models which use constituency trees, DT-RNNs naturally focus on the action and agents in a sentence. They are better able to abstract from the details of word order and syntactic expression. DT-RNNs outperform other recursive and recurrent neural networks, kernelized CCA and a bag-of-words baseline on the tasks of finding an image that fits a sentence description and vice versa. They also give more similar representations to sentences that describe the same image.