We introduce PAELLA, a Parameter-Efficient Lightweight Language-Agnostic image captioning model designed to be both parameter and data-efficient using retrieval augmentation. The model is trained by learning a small mapping network with 34M parameters between a pre-trained visual model and a multilingual language model that is conditioned on two types of input: (i) the image itself, and (ii) a set of retrieved captions in the target language. The retrieved examples play a key role in guiding the model to generate captions across languages. Through retrieval, the model can be lightweight in terms of the number of trainable parameters, which only exist in its mapping network, and also in the amount of multilingual training data that is required. Experiments on the XM3600 dataset, featuring 36 languages, show that PAELLA can outperform or compete against some models with 3–77× more learned parameters and 35–863× more data, particularly in low-resource languages. We also find that PAELLA can be trained on only monolingual data and still show strong zero-shot abilities in other languages.
Recent advances in retrieval-augmented models for image captioning highlight the benefit of retrieving related captions for efficient, lightweight models with strong domain-transfer capabilities. While these models demonstrate the success of retrieval augmentation, retrieval models are still far from perfect in practice: the retrieved information can sometimes mislead the model, resulting in incorrect generation and worse performance. In this paper, we analyze the robustness of a retrieval-augmented captioning model SmallCap. Our analysis shows that the model is sensitive to tokens that appear in the majority of the retrieved captions, and the input attribution shows that those tokens are likely copied into the generated output. Given these findings, we propose to train the model by sampling retrieved captions from more diverse sets. This decreases the chance that the model learns to copy majority tokens, and improves both in-domain and cross-domain performance.
Multilingual image captioning has recently been tackled by training with large-scale machine translated data, which is an expensive, noisy, and time-consuming process. Without requiring any multilingual caption data, we propose LMCap, an image-blind few-shot multilingual captioning model that works by prompting a language model with retrieved captions. Specifically, instead of following the standard encoder-decoder paradigm, given an image, LMCap first retrieves the captions of similar images using a multilingual CLIP encoder. These captions are then combined into a prompt for an XGLM decoder, in order to generate captions in the desired language. In other words, the generation model does not directly process the image, instead it processes retrieved captions. Experiments on the XM3600 dataset of geographically diverse images show that our model is competitive with fully-supervised multilingual captioning models, without requiring any supervised training on any captioning data.
Inspired by retrieval-augmented language generation and pretrained Vision and Language (V&L) encoders, we present a new approach to image captioning that generates sentences given the input image and a set of captions retrieved from a datastore, as opposed to the image alone. The encoder in our model jointly processes the image and retrieved captions using a pretrained V&L BERT, while the decoder attends to the multimodal encoder representations, benefiting from the extra textual evidence from the retrieved captions. Experimental results on the COCO dataset show that image captioning can be effectively formulated from this new perspective. Our model, named EXTRA, benefits from using captions retrieved from the training dataset, and it can also benefit from using an external dataset without the need for retraining. Ablation studies show that retrieving a sufficient number of captions (e.g., k=5) can improve captioning quality. Our work contributes towards using pretrained V&L encoders for generative tasks, instead of standard classification tasks.