Rita Ramos


pdf bib
LMCap: Few-shot Multilingual Image Captioning by Retrieval Augmented Language Model Prompting
Rita Ramos | Bruno Martins | Desmond Elliott
Findings of the Association for Computational Linguistics: ACL 2023

Multilingual image captioning has recently been tackled by training with large-scale machine translated data, which is an expensive, noisy, and time-consuming process. Without requiring any multilingual caption data, we propose LMCap, an image-blind few-shot multilingual captioning model that works by prompting a language model with retrieved captions. Specifically, instead of following the standard encoder-decoder paradigm, given an image, LMCap first retrieves the captions of similar images using a multilingual CLIP encoder. These captions are then combined into a prompt for an XGLM decoder, in order to generate captions in the desired language. In other words, the generation model does not directly process the image, instead it processes retrieved captions. Experiments on the XM3600 dataset of geographically diverse images show that our model is competitive with fully-supervised multilingual captioning models, without requiring any supervised training on any captioning data.

pdf bib
Retrieval-augmented Image Captioning
Rita Ramos | Desmond Elliott | Bruno Martins
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Inspired by retrieval-augmented language generation and pretrained Vision and Language (V&L) encoders, we present a new approach to image captioning that generates sentences given the input image and a set of captions retrieved from a datastore, as opposed to the image alone. The encoder in our model jointly processes the image and retrieved captions using a pretrained V&L BERT, while the decoder attends to the multimodal encoder representations, benefiting from the extra textual evidence from the retrieved captions. Experimental results on the COCO dataset show that image captioning can be effectively formulated from this new perspective. Our model, named EXTRA, benefits from using captions retrieved from the training dataset, and it can also benefit from using an external dataset without the need for retraining. Ablation studies show that retrieving a sufficient number of captions (e.g., k=5) can improve captioning quality. Our work contributes towards using pretrained V&L encoders for generative tasks, instead of standard classification tasks.