Robert Hawkins


pdf bib
Causal interventions expose implicit situation models for commonsense language understanding
Takateru Yamakoshi | James McClelland | Adele Goldberg | Robert Hawkins
Findings of the Association for Computational Linguistics: ACL 2023

Accounts of human language processing have long appealed to implicit “situation models” that enrich comprehension with relevant but unstated world knowledge. Here, we apply causal intervention techniques to recent transformer models to analyze performance on the Winograd Schema Challenge (WSC), where a single context cue shifts interpretation of an ambiguous pronoun. We identify a relatively small circuit of attention heads that are responsible for propagating information from the context word that guides which of the candidate noun phrases the pronoun ultimately attends to. We then compare how this circuit behaves in a closely matched “syntactic” control where the situation model is not strictly necessary. These analyses suggest a distinct pathway through which implicit situation models may be constructed to guide pronoun resolution


pdf bib
Abstract Visual Reasoning with Tangram Shapes
Anya Ji | Noriyuki Kojima | Noah Rush | Alane Suhr | Wai Keen Vong | Robert Hawkins | Yoav Artzi
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We introduce KiloGram, a resource for studying abstract visual reasoning in humans and machines. Drawing on the history of tangram puzzles as stimuli in cognitive science, we build a richly annotated dataset that, with >1k distinct stimuli, is orders of magnitude larger and more diverse than prior resources. It is both visually and linguistically richer, moving beyond whole shape descriptions to include segmentation maps and part labels. We use this resource to evaluate the abstract visual reasoning capacities of recent multi-modal models. We observe that pre-trained weights demonstrate limited abstract reasoning, which dramatically improves with fine-tuning. We also observe that explicitly describing parts aids abstract reasoning for both humans and models, especially when jointly encoding the linguistic and visual inputs.

pdf bib
Mixed-effects transformers for hierarchical adaptation
Julia White | Noah Goodman | Robert Hawkins
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Language differs dramatically from context to context. To some degree, large language models like GPT-3 account for such variation by conditioning on strings of initial input text, or prompts. However, prompting can be ineffective when contexts are sparse, out-of-sample, or extra-textual. In this paper, we introduce the mixed-effects transformer (MET), a novel approach for learning hierarchically-structured prefixes— lightweight modules prepended to an input sequence— to account for structured variation in language use. Specifically, we show how the popular class of mixed-effects regression models may be extended to transformer-based architectures using a regularized prefix-tuning procedure with dropout. We evaluate this approach on several domain-adaptation benchmarks, finding that it learns contextual variation from minimal data while generalizing well to unseen contexts.

pdf bib
Probing BERT’s priors with serial reproduction chains
Takateru Yamakoshi | Thomas Griffiths | Robert Hawkins
Findings of the Association for Computational Linguistics: ACL 2022

Sampling is a promising bottom-up method for exposing what generative models have learned about language, but it remains unclear how to generate representative samples from popular masked language models (MLMs) like BERT. The MLM objective yields a dependency network with no guarantee of consistent conditional distributions, posing a problem for naive approaches. Drawing from theories of iterated learning in cognitive science, we explore the use of serial reproduction chains to sample from BERT’s priors. In particular, we observe that a unique and consistent estimator of the ground-truth joint distribution is given by a Generative Stochastic Network (GSN) sampler, which randomly selects which token to mask and reconstruct on each step. We show that the lexical and syntactic statistics of sentences from GSN chains closely match the ground-truth corpus distribution and perform better than other methods in a large corpus of naturalness judgments. Our findings establish a firmer theoretical foundation for bottom-up probing and highlight richer deviations from human priors.


pdf bib
Open-domain clarification question generation without question examples
Julia White | Gabriel Poesia | Robert Hawkins | Dorsa Sadigh | Noah Goodman
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

An overarching goal of natural language processing is to enable machines to communicate seamlessly with humans. However, natural language can be ambiguous or unclear. In cases of uncertainty, humans engage in an interactive process known as repair: asking questions and seeking clarification until their uncertainty is resolved. We propose a framework for building a visually grounded question-asking model capable of producing polar (yes-no) clarification questions to resolve misunderstandings in dialogue. Our model uses an expected information gain objective to derive informative questions from an off-the-shelf image captioner without requiring any supervised question-answer data. We demonstrate our model’s ability to pose questions that improve communicative success in a goal-oriented 20 questions game with synthetic and human answerers.


pdf bib
Investigating representations of verb bias in neural language models
Robert Hawkins | Takateru Yamakoshi | Thomas Griffiths | Adele Goldberg
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Languages typically provide more than one grammatical construction to express certain types of messages. A speaker’s choice of construction is known to depend on multiple factors, including the choice of main verb – a phenomenon known as verb bias. Here we introduce DAIS, a large benchmark dataset containing 50K human judgments for 5K distinct sentence pairs in the English dative alternation. This dataset includes 200 unique verbs and systematically varies the definiteness and length of arguments. We use this dataset, as well as an existing corpus of naturally occurring data, to evaluate how well recent neural language models capture human preferences. Results show that larger models perform better than smaller models, and transformer architectures (e.g. GPT-2) tend to out-perform recurrent architectures (e.g. LSTMs) even under comparable parameter and training settings. Additional analyses of internal feature representations suggest that transformers may better integrate specific lexical information with grammatical constructions.

pdf bib
Continual Adaptation for Efficient Machine Communication
Robert Hawkins | Minae Kwon | Dorsa Sadigh | Noah Goodman
Proceedings of the 24th Conference on Computational Natural Language Learning

To communicate with new partners in new contexts, humans rapidly form new linguistic conventions. Recent neural language models are able to comprehend and produce the existing conventions present in their training data, but are not able to flexibly and interactively adapt those conventions on the fly as humans do. We introduce an interactive repeated reference task as a benchmark for models of adaptation in communication and propose a regularized continual learning framework that allows an artificial agent initialized with a generic language model to more accurately and efficiently communicate with a partner over time. We evaluate this framework through simulations on COCO and in real-time reference game experiments with human partners.