Robin Algayres


2023

pdf bib
Generative Spoken Language Model based on continuous word-sized audio tokens
Robin Algayres | Yossi Adi | Tu Nguyen | Jade Copet | Gabriel Synnaeve | Benoît Sagot | Emmanuel Dupoux
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

In NLP, text language models based on words or subwords are known to outperform their character-based counterparts. Yet, in the speech community, the standard input of spoken LMs are 20ms or 40ms-long discrete units (shorter than a phoneme). Taking inspiration from word-based LM, we introduce a Generative Spoken Language Model (GSLM) based on word-size continuous-valued audio tokens that can generate diverse and expressive language output. This is obtained by replacing lookup table for lexical types with a Lexical Embedding function, the cross entropy loss by a contrastive loss, and multinomial sampling by k-NN sampling. The resulting model is the first generative language model based on word-size continuous tokens. Its performance is on par with discrete unit GSLMs regarding generation quality as measured by automatic metrics and subjective human judgements. Moreover, it is five times more memory efficient thanks to its large 200ms units. In addition, the embeddings before and after the Lexical Embedder are phonetically and semantically interpretable.

pdf bib
XLS-R fine-tuning on noisy word boundaries for unsupervised speech segmentation into words
Robin Algayres | Pablo Diego-Simon | Benoît Sagot | Emmanuel Dupoux
Findings of the Association for Computational Linguistics: EMNLP 2023

Due to the absence of explicit word boundaries in the speech stream, the task of segmenting spoken sentences into word units without text supervision is particularly challenging. In this work, we leverage the most recent self-supervised speech models that have proved to quickly adapt to new tasks through fine-tuning, even in low resource conditions. Taking inspiration from semi-supervised learning, we fine-tune an XLS-R model to predict word boundaries themselves produced by top-tier speech segmentation systems: DPDP, VG-HuBERT and DP-Parse. Once XLS-R is fine-tuned, it is used to infer new word boundary labels that are used in turn for another fine-tuning step. Our method consistently improves the performance of each system and set a new state-of-the-art that is, on average 130% higher than the previous one as measured by the F1 score on correctly discovered word tokens on five corpora featuring different languages. Finally, our system can segment speech from languages unseen during fine-tuning in a zero-shot fashion.

pdf bib
Generative Spoken Dialogue Language Modeling
Tu Anh Nguyen | Eugene Kharitonov | Jade Copet | Yossi Adi | Wei-Ning Hsu | Ali Elkahky | Paden Tomasello | Robin Algayres | Benoît Sagot | Abdelrahman Mohamed | Emmanuel Dupoux
Transactions of the Association for Computational Linguistics, Volume 11

We introduce dGSLM, the first “textless” model able to generate audio samples of naturalistic spoken dialogues. It uses recent work on unsupervised spoken unit discovery coupled with a dual-tower transformer architecture with cross-attention trained on 2000 hours of two-channel raw conversational audio (Fisher dataset) without any text or labels. We show that our model is able to generate speech, laughter, and other paralinguistic signals in the two channels simultaneously and reproduces more naturalistic and fluid turn taking compared to a text-based cascaded model.1,2

2022

pdf bib
DP-Parse: Finding Word Boundaries from Raw Speech with an Instance Lexicon
Robin Algayres | Tristan Ricoul | Julien Karadayi | Hugo Laurençon | Salah Zaiem | Abdelrahman Mohamed | Benoît Sagot | Emmanuel Dupoux
Transactions of the Association for Computational Linguistics, Volume 10

Finding word boundaries in continuous speech is challenging as there is little or no equivalent of a ‘space’ delimiter between words. Popular Bayesian non-parametric models for text segmentation (Goldwater et al., 2006, 2009) use a Dirichlet process to jointly segment sentences and build a lexicon of word types. We introduce DP-Parse, which uses similar principles but only relies on an instance lexicon of word tokens, avoiding the clustering errors that arise with a lexicon of word types. On the Zero Resource Speech Benchmark 2017, our model sets a new speech segmentation state-of-the-art in 5 languages. The algorithm monotonically improves with better input representations, achieving yet higher scores when fed with weakly supervised inputs. Despite lacking a type lexicon, DP-Parse can be pipelined to a language model and learn semantic and syntactic representations as assessed by a new spoken word embedding benchmark. 1