Rocco Tripodi


pdf bib
SGL: Speaking the Graph Languages of Semantic Parsing via Multilingual Translation
Luigi Procopio | Rocco Tripodi | Roberto Navigli
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Graph-based semantic parsing aims to represent textual meaning through directed graphs. As one of the most promising general-purpose meaning representations, these structures and their parsing have gained a significant interest momentum during recent years, with several diverse formalisms being proposed. Yet, owing to this very heterogeneity, most of the research effort has focused mainly on solutions specific to a given formalism. In this work, instead, we reframe semantic parsing towards multiple formalisms as Multilingual Neural Machine Translation (MNMT), and propose SGL, a many-to-many seq2seq architecture trained with an MNMT objective. Backed by several experiments, we show that this framework is indeed effective once the learning procedure is enhanced with large parallel corpora coming from Machine Translation: we report competitive performances on AMR and UCCA parsing, especially once paired with pre-trained architectures. Furthermore, we find that models trained under this configuration scale remarkably well to tasks such as cross-lingual AMR parsing: SGL outperforms all its competitors by a large margin without even explicitly seeing non-English to AMR examples at training time and, once these examples are included as well, sets an unprecedented state of the art in this task. We release our code and our models for research purposes at

pdf bib
UniteD-SRL: A Unified Dataset for Span- and Dependency-Based Multilingual and Cross-Lingual Semantic Role Labeling
Rocco Tripodi | Simone Conia | Roberto Navigli
Findings of the Association for Computational Linguistics: EMNLP 2021

Multilingual and cross-lingual Semantic Role Labeling (SRL) have recently garnered increasing attention as multilingual text representation techniques have become more effective and widely available. While recent work has attained growing success, results on gold multilingual benchmarks are still not easily comparable across languages, making it difficult to grasp where we stand. For example, in CoNLL-2009, the standard benchmark for multilingual SRL, language-to-language comparisons are affected by the fact that each language has its own dataset which differs from the others in size, domains, sets of labels and annotation guidelines. In this paper, we address this issue and propose UniteD-SRL, a new benchmark for multilingual and cross-lingual, span- and dependency-based SRL. UniteD-SRL provides expert-curated parallel annotations using a common predicate-argument structure inventory, allowing direct comparisons across languages and encouraging studies on cross-lingual transfer in SRL. We release UniteD-SRL v1.0 at

pdf bib
GeneSis: A Generative Approach to Substitutes in Context
Caterina Lacerra | Rocco Tripodi | Roberto Navigli
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The lexical substitution task aims at generating a list of suitable replacements for a target word in context, ideally keeping the meaning of the modified text unchanged. While its usage has increased in recent years, the paucity of annotated data prevents the finetuning of neural models on the task, hindering the full fruition of recently introduced powerful architectures such as language models. Furthermore, lexical substitution is usually evaluated in a framework that is strictly bound to a limited vocabulary, making it impossible to credit appropriate, but out-of-vocabulary, substitutes. To assess these issues, we proposed GeneSis (Generating Substitutes in contexts), the first generative approach to lexical substitution. Thanks to a seq2seq model, we generate substitutes for a word according to the context it appears in, attaining state-of-the-art results on different benchmarks. Moreover, our approach allows silver data to be produced for further improving the performances of lexical substitution systems. Along with an extensive analysis of GeneSis results, we also present a human evaluation of the generated substitutes in order to assess their quality. We release the fine-tuned models, the generated datasets, and the code to reproduce the experiments at


pdf bib
XL-AMR: Enabling Cross-Lingual AMR Parsing with Transfer Learning Techniques
Rexhina Blloshmi | Rocco Tripodi | Roberto Navigli
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Abstract Meaning Representation (AMR) is a popular formalism of natural language that represents the meaning of a sentence as a semantic graph. It is agnostic about how to derive meanings from strings and for this reason it lends itself well to the encoding of semantics across languages. However, cross-lingual AMR parsing is a hard task, because training data are scarce in languages other than English and the existing English AMR parsers are not directly suited to being used in a cross-lingual setting. In this work we tackle these two problems so as to enable cross-lingual AMR parsing: we explore different transfer learning techniques for producing automatic AMR annotations across languages and develop a cross-lingual AMR parser, XL-AMR. This can be trained on the produced data and does not rely on AMR aligners or source-copy mechanisms as is commonly the case in English AMR parsing. The results of XL-AMR significantly surpass those previously reported in Chinese, German, Italian and Spanish. Finally we provide a qualitative analysis which sheds light on the suitability of AMR across languages. We release XL-AMR at


pdf bib
Tracing Antisemitic Language Through Diachronic Embedding Projections: France 1789-1914
Rocco Tripodi | Massimo Warglien | Simon Levis Sullam | Deborah Paci
Proceedings of the 1st International Workshop on Computational Approaches to Historical Language Change

We investigate some aspects of the history of antisemitism in France, one of the cradles of modern antisemitism, using diachronic word embeddings. We constructed a large corpus of French books and periodicals issues that contain a keyword related to Jews and performed a diachronic word embedding over the 1789-1914 period. We studied the changes over time in the semantic spaces of 4 target words and performed embedding projections over 6 streams of antisemitic discourse. This allowed us to track the evolution of antisemitic bias in the religious, economic, socio-politic, racial, ethic and conspiratorial domains. Projections show a trend of growing antisemitism, especially in the years starting in the mid-80s and culminating in the Dreyfus affair. Our analysis also allows us to highlight the peculiar adverse bias towards Judaism in the broader context of other religions.

pdf bib
Game Theory Meets Embeddings: a Unified Framework for Word Sense Disambiguation
Rocco Tripodi | Roberto Navigli
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Game-theoretic models, thanks to their intrinsic ability to exploit contextual information, have shown to be particularly suited for the Word Sense Disambiguation task. They represent ambiguous words as the players of a non cooperative game and their senses as the strategies that the players can select in order to play the games. The interaction among the players is modeled with a weighted graph and the payoff as an embedding similarity function, that the players try to maximize. The impact of the word and sense embedding representations in the framework has been tested and analyzed extensively: experiments on standard benchmarks show state-of-art performances and different tests hint at the usefulness of using disambiguation to obtain contextualized word representations.


pdf bib
A Game-Theoretic Approach to Word Sense Disambiguation
Rocco Tripodi | Marcello Pelillo
Computational Linguistics, Volume 43, Issue 1 - April 2017

This article presents a new model for word sense disambiguation formulated in terms of evolutionary game theory, where each word to be disambiguated is represented as a node on a graph whose edges represent word relations and senses are represented as classes. The words simultaneously update their class membership preferences according to the senses that neighboring words are likely to choose. We use distributional information to weigh the influence that each word has on the decisions of the others and semantic similarity information to measure the strength of compatibility among the choices. With this information we can formulate the word sense disambiguation problem as a constraint satisfaction problem and solve it using tools derived from game theory, maintaining the textual coherence. The model is based on two ideas: Similar words should be assigned to similar classes and the meaning of a word does not depend on all the words in a text but just on some of them. The article provides an in-depth motivation of the idea of modeling the word sense disambiguation problem in terms of game theory, which is illustrated by an example. The conclusion presents an extensive analysis on the combination of similarity measures to use in the framework and a comparison with state-of-the-art systems. The results show that our model outperforms state-of-the-art algorithms and can be applied to different tasks and in different scenarios.


Game Theory and Natural Language: Origin, Evolution and Processing
Rocco Tripodi | Marcello Pelillo
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts

The development of game theory in the early 1940's by John von Neumann was a reaction against the then dominant view that problems in economic theory can be formulated using standard methods from optimization theory. Indeed, most real-world economic problems involve conflicting interactions among decision-making agents that cannot be adequately captured by a single (global) objective function. The main idea behind game theory is to shift the emphasis from optimality criteria to equilibrium conditions. Game theory provides a framework to model complex scenarios, with applications in economics and social science but also in different fields of information technology. With the recent development of algorithmic game theory, it has been used to solve problems in computer vision, pattern recognition, machine learning and natural language processing.Game-theoretic frameworks have been used in different ways to study language origin and evolution. Furthermore, the so-called game metaphor has been used by philosophers and linguists to explain how language evolved and how it works. Ludwig Wittgenstein, for example, famously introduced the concept of a language game to explain the conventional nature of language, and put forward the idea of the spontaneous formation of a common language that gradually emerges from the interactions among the speakers within a population.This concept opens the way to the interpretation of language as a complex adaptive system composed of linguistic units and their interactions, which gives rise to the emergence of structural properties. It is the core part of many computational models of language that are based on classical game theory and evolutionary game theory. With the former it is possible to model how speakers form a signaling system in which the ambiguity of the symbols is minimized; with the latter it is possible to model how speakers coordinate their linguistic choices according to the satisfaction that they have about the outcome of a communication act, converging to a common language. In the same vein, many other attempts have been proposed to explain how other characteristics of language follow similar dynamics.Game theory, and in particular evolutionary game theory, thanks to their ability to model interactive situations and to integrate information from multiple sources, have also been used to solve specific problems in natural language processing and information retrieval, such as language generation, word sense disambiguation and document and text clustering.The goal of this tutorial is to offer an introduction to the basic concepts of game theory and to show its main applications in the study of language, from different perspectives. We shall assume no pre-existing knowledge of game theory by the audience, thereby making the tutorial self-contained and understandable by a non-expert.


pdf bib
WSD-games: a Game-Theoretic Algorithm for Unsupervised Word Sense Disambiguation
Rocco Tripodi | Marcello Pelillo
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015)

pdf bib
Semantics and Discourse Processing for Expressive TTS
Rodolfo Delmonte | Rocco Tripodi
Proceedings of the First Workshop on Linking Computational Models of Lexical, Sentential and Discourse-level Semantics