Rogerio Feris


2024

pdf bib
LangNav: Language as a Perceptual Representation for Navigation
Bowen Pan | Rameswar Panda | SouYoung Jin | Rogerio Feris | Aude Oliva | Phillip Isola | Yoon Kim
Findings of the Association for Computational Linguistics: NAACL 2024

We explore the use of language as a perceptual representation for vision-and-language navigation (VLN), with a focus on low-data settings. Our approach uses off-the-shelf vision systems for image captioning and object detection to convert an agent’s egocentric panoramic view at each time step into natural language descriptions. We then finetune a pretrained language model to select an action, based on the current view and the trajectory history, that would best fulfill the navigation instructions. In contrast to the standard setup which adapts a pretrained language model to work directly with continuous visual features from pretrained vision models, our approach instead uses (discrete) language as the perceptual representation. We explore several use cases of our language-based navigation (LangNav) approach on the R2R VLN benchmark: generating synthetic trajectories from a prompted language model (GPT-4) with which to finetune a smaller language model; domain transfer where we transfer a policy learned on one simulated environment (ALFRED) to another (more realistic) environment (R2R); and combining both vision- and language-based representations for VLN. Our approach is found to improve upon baselines that rely on visual features in settings where only a few expert trajectories (10-100) are available, demonstrating the potential of language as a perceptual representation for navigation.

pdf bib
Self-Specialization: Uncovering Latent Expertise within Large Language Models
Junmo Kang | Hongyin Luo | Yada Zhu | Jacob Hansen | James Glass | David Cox | Alan Ritter | Rogerio Feris | Leonid Karlinsky
Findings of the Association for Computational Linguistics: ACL 2024

Recent works have demonstrated the effectiveness of self-alignment in which a large language model is aligned to follow general instructions using instructional data generated from the model itself starting from a handful of human-written seeds. Instead of general alignment, in this work, we focus on self-alignment for expert domain specialization (e.g., biomedicine, finance). As a preliminary, we quantitively show the marginal effect that generic instruction-following training has on downstream expert domains’ performance. To remedy this, we propose self-specialization - allowing for effective model specialization while achieving cross-task generalization by leveraging only a few labeled seeds. Self-specialization offers a data- and parameter-efficient way of “carving out” an expert model out of a generalist pre-trained LLM. Exploring a variety of popular open large models as a base for specialization, our experimental results in both biomedical and financial domains show that our self-specialized models outperform their base models by a large margin, and even larger models that are generally instruction-tuned or that have been adapted to the target domain by other means.

2023

pdf bib
Synthetic Pre-Training Tasks for Neural Machine Translation
Zexue He | Graeme Blackwood | Rameswar Panda | Julian McAuley | Rogerio Feris
Findings of the Association for Computational Linguistics: ACL 2023

Pre-training models with large crawled corpora can lead to issues such as toxicity and bias, as well as copyright and privacy concerns. A promising way of alleviating such concerns is to conduct pre-training with synthetic tasks and data, since no real-world information is ingested by the model. Our goal in this paper is to understand the factors that contribute to the effectiveness of pre-training models when using synthetic resources, particularly in the context of neural machine translation. We propose several novel approaches to pre-training translation models that involve different levels of lexical and structural knowledge, including: 1) generating obfuscated data from a large parallel corpus 2) concatenating phrase pairs extracted from a small word-aligned corpus, and 3) generating synthetic parallel data without real human language corpora. Our experiments on multiple language pairs reveal that pre-training benefits can be realized even with high levels of obfuscation or purely synthetic parallel data. We hope the findings from our comprehensive empirical analysis will shed light on understanding what matters for NMT pre-training, as well as pave the way for the development of more efficient and less toxic models.

pdf bib
Incorporating Structured Representations into Pretrained Vision & Language Models Using Scene Graphs
Roei Herzig | Alon Mendelson | Leonid Karlinsky | Assaf Arbelle | Rogerio Feris | Trevor Darrell | Amir Globerson
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Vision and language models (VLMs) have demonstrated remarkable zero-shot (ZS) performance in a variety of tasks. However, recent works have shown that even the best VLMs struggle to capture aspects of compositional scene understanding, such as object attributes, relations, and action states. In contrast, obtaining structured annotations, such as scene graphs (SGs), that could improve these models is time-consuming and costly, and thus cannot be used on a large scale. Here we ask whether small SG datasets can provide sufficient information for enhancing structured understanding of pretrained VLMs. We show that it is indeed possible to improve VLMs when learning from SGs by integrating components that incorporate structured information into both visual and textual representations. For the visual side, we incorporate a special “SG Component” in the image transformer trained to predict SG information, while for the textual side, we utilize SGs to generate fine-grained captions that highlight different compositional aspects of the scene. Our method improves the performance of several popular VLMs on multiple VL datasets with only a mild degradation in ZS capabilities.