Rohan Gupta


pdf bib
WASSA@IITK at WASSA 2021: Multi-task Learning and Transformer Finetuning for Emotion Classification and Empathy Prediction
Jay Mundra | Rohan Gupta | Sagnik Mukherjee
Proceedings of the Eleventh Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

This paper describes our contribution to the WASSA 2021 shared task on Empathy Prediction and Emotion Classification. The broad goal of this task was to model an empathy score, a distress score and the overall level of emotion of an essay written in response to a newspaper article associated with harm to someone. We have used the ELECTRA model abundantly and also advanced deep learning approaches like multi-task learning. Additionally, we also leveraged standard machine learning techniques like ensembling. Our system achieves a Pearson Correlation Coefficient of 0.533 on sub-task I and a macro F1 score of 0.5528 on sub-task II. We ranked 1st in Emotion Classification sub-task and 3rd in Empathy Prediction sub-task.

pdf bib
MCL@IITK at SemEval-2021 Task 2: Multilingual and Cross-lingual Word-in-Context Disambiguation using Augmented Data, Signals, and Transformers
Rohan Gupta | Jay Mundra | Deepak Mahajan | Ashutosh Modi
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

In this work, we present our approach for solving the SemEval 2021 Task 2: Multilingual and Cross-lingual Word-in-Context Disambiguation (MCL-WiC). The task is a sentence pair classification problem where the goal is to detect whether a given word common to both the sentences evokes the same meaning. We submit systems for both the settings - Multilingual (the pair’s sentences belong to the same language) and Cross-Lingual (the pair’s sentences belong to different languages). The training data is provided only in English. Consequently, we employ cross-lingual transfer techniques. Our approach employs fine-tuning pre-trained transformer-based language models, like ELECTRA and ALBERT, for the English task and XLM-R for all other tasks. To improve these systems’ performance, we propose adding a signal to the word to be disambiguated and augmenting our data by sentence pair reversal. We further augment the dataset provided to us with WiC, XL-WiC and SemCor 3.0. Using ensembles, we achieve strong performance in the Multilingual task, placing first in the EN-EN and FR-FR sub-tasks. For the Cross-Lingual setting, we employed translate-test methods and a zero-shot method, using our multilingual models, with the latter performing slightly better.