Rong Xiao
2024
Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding
Hanling Yi
|
Feng Lin
|
Hongbin Li
|
Ning Peiyang
|
Xiaotian Yu
|
Rong Xiao
Findings of the Association for Computational Linguistics: ACL 2024
This research aims to accelerate the inference speed of large language models (LLMs) with billions of parameters. We propose Smart Parallel Auto-Correct dEcoding (SPACE), an approach designed for achieving lossless acceleration of LLMs. By integrating semi-autoregressive inference and speculative decoding capabilities, SPACE uniquely enables autoregressive LLMs to parallelize token generation and verification. This is realized through a specialized semi-autoregressive supervised fine-tuning process that equips existing LLMs with the ability to simultaneously predict multiple tokens. Additionally, an auto-correct decoding algorithm facilitates the simultaneous generation and verification of token sequences within a single model invocation. Through extensive experiments on a range of LLMs, SPACE has demonstrated inference speedup ranging from 2.7x-4.0x on HumanEval-X while maintaining output quality.
2022
Attention Mechanism with Energy-Friendly Operations
Yu Wan
|
Baosong Yang
|
Dayiheng Liu
|
Rong Xiao
|
Derek Wong
|
Haibo Zhang
|
Boxing Chen
|
Lidia Chao
Findings of the Association for Computational Linguistics: ACL 2022
Attention mechanism has become the dominant module in natural language processing models. It is computationally intensive and depends on massive power-hungry multiplications. In this paper, we rethink variants of attention mechanism from the energy consumption aspects. After reaching the conclusion that the energy costs of several energy-friendly operations are far less than their multiplication counterparts, we build a novel attention model by replacing multiplications with either selective operations or additions. Empirical results on three machine translation tasks demonstrate that the proposed model, against the vanilla one, achieves competitable accuracy while saving 99% and 66% energy during alignment calculation and the whole attention procedure. Our code will be released upon the acceptance.
2021
Joint Multi-modal Aspect-Sentiment Analysis with Auxiliary Cross-modal Relation Detection
Xincheng Ju
|
Dong Zhang
|
Rong Xiao
|
Junhui Li
|
Shoushan Li
|
Min Zhang
|
Guodong Zhou
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Aspect terms extraction (ATE) and aspect sentiment classification (ASC) are two fundamental and fine-grained sub-tasks in aspect-level sentiment analysis (ALSA). In the textual analysis, joint extracting both aspect terms and sentiment polarities has been drawn much attention due to the better applications than individual sub-task. However, in the multi-modal scenario, the existing studies are limited to handle each sub-task independently, which fails to model the innate connection between the above two objectives and ignores the better applications. Therefore, in this paper, we are the first to jointly perform multi-modal ATE (MATE) and multi-modal ASC (MASC), and we propose a multi-modal joint learning approach with auxiliary cross-modal relation detection for multi-modal aspect-level sentiment analysis (MALSA). Specifically, we first build an auxiliary text-image relation detection module to control the proper exploitation of visual information. Second, we adopt the hierarchical framework to bridge the multi-modal connection between MATE and MASC, as well as separately visual guiding for each sub module. Finally, we can obtain all aspect-level sentiment polarities dependent on the jointly extracted specific aspects. Extensive experiments show the effectiveness of our approach against the joint textual approaches, pipeline and collapsed multi-modal approaches.
Search
Fix data
Co-authors
- Lidia Chao 1
- Boxing Chen 1
- Xincheng Ju 1
- Junhui Li (李军辉) 1
- Shoushan Li (李寿山) 1
- show all...