Large Language Models (LLMs) have exhibited impressive capabilities in various tasks, yet their vast parameter sizes restrict their applicability in resource-constrained settings. Knowledge distillation (KD) offers a viable solution by transferring expertise from large teacher models to compact student models. However, traditional KD techniques face specific challenges when applied to LLMs, including restricted access to LLM outputs, significant teacher-student capacity gaps, and the inherited mis-calibration issue. In this work, we present PLaD, a novel preference-based LLM distillation framework. PLaD exploits the teacher-student capacity discrepancy to generate pseudo-preference pairs where teacher outputs are preferred over student outputs. Then, PLaD leverages a ranking loss to re-calibrate the student’s estimation of sequence likelihood, which steers the student’s focus towards understanding the relative quality of outputs instead of simply imitating the teacher. PLaD bypasses the need for access to teacher LLM’s internal states, tackles the student’s expressivity limitations, and mitigates the student mis-calibration issue. Through extensive experiments on two sequence generation tasks and with various LLMs, we demonstrate the effectiveness of our proposed PLaD framework.
Although Large Language Models (LLMs) exhibit remarkable adaptability across domains, these models often fall short in structured knowledge extraction tasks such as named entity recognition (NER). This paper explores an innovative, cost-efficient strategy to harness LLMs with modest NER capabilities for producing superior NER datasets. Our approach diverges from the basic class-conditional prompts by instructing LLMs to self-reflect on the specific domain, thereby generating domain-relevant attributes (such as category and emotions for movie reviews), which are utilized for creating attribute-rich training data. Furthermore, we preemptively generate entity terms and then develop NER context data around these entities, effectively bypassing the LLMs’ challenges with complex structures. Our experiments across both general and niche domains reveal significant performance enhancements over conventional data generation methods while being more cost-effective than existing alternatives.
We present PATRON, a prompt-based data selection method for pre-trained language model fine-tuning under cold-start scenarios, i.e., no initial labeled data are available. In PATRON, we design (1) a prompt-based uncertainty propagation approach to estimate the importance of data points and (2) a partition-then-rewrite (PTR) strategy to promote sample diversity when querying for annotations. Experiments on six text classification datasets show that PATRON outperforms the strongest cold-start data selection baselines by up to 6.9%. Besides, with 128 labels only, PATRON achieves 91.0% and 92.1% of the fully supervised performance based on vanilla fine-tuning and prompt-based learning respectively. Our implementation of PATRON will be published upon acceptance.
With the development of large language models (LLMs), zero-shot learning has attracted much attention for various NLP tasks. Different from prior works that generate training data with billion-scale natural language generation (NLG) models, we propose a retrieval-enhanced framework to create training data from a general-domain unlabeled corpus. To realize this, we first conduct contrastive pretraining to learn an unsupervised dense retriever for extracting the most relevant documents using class-descriptive verbalizers. We then further pro- pose two simple strategies, namely Verbalizer Augmentation with Demonstrations and Self- consistency Guided Filtering to improve the topic coverage of the dataset while removing noisy examples. Experiments on nine datasets demonstrate that ReGen achieves 4.3% gain over the strongest baselines and saves around 70% of the time when compared with baselines using large NLG models. Besides, REGEN can be naturally integrated with recently proposed large language models to boost performance.
Although fine-tuning pre-trained language models (PLMs) renders strong performance in many NLP tasks, it relies on excessive labeled data. Recently, researchers have resorted to active fine-tuning for enhancing the label efficiency of PLM fine-tuning, but existing methods of this type usually ignore the potential of unlabeled data. We develop AcTune, a new framework that improves the label efficiency of active PLM fine-tuning by unleashing the power of unlabeled data via self-training. AcTune switches between data annotation and model self-training based on uncertainty: the unlabeled samples of high-uncertainty are selected for annotation, while the ones from low-uncertainty regions are used for model self-training. Additionally, we design (1) a region-aware sampling strategy to avoid redundant samples when querying annotations and (2) a momentum-based memory bank to dynamically aggregate the model’s pseudo labels to suppress label noise in self-training. Experiments on 6 text classification datasets show that AcTune outperforms the strongest active learning and self-training baselines and improves the label efficiency of PLM fine-tuning by 56.2% on average. Our implementation is available at https://github.com/yueyu1030/actune.
Weakly-supervised learning (WSL) has shown promising results in addressing label scarcity on many NLP tasks, but manually designing a comprehensive, high-quality labeling rule set is tedious and difficult. We study interactive weakly-supervised learning—the problem of iteratively and automatically discovering novel labeling rules from data to improve the WSL model. Our proposed model, named PRBoost, achieves this goal via iterative prompt-based rule discovery and model boosting. It uses boosting to identify large-error instances and discovers candidate rules from them by prompting pre-trained LMs with rule templates. The candidate rules are judged by human experts, and the accepted rules are used to generate complementary weak labels and strengthen the current model. Experiments on four tasks show PRBoost outperforms state-of-the-art WSL baselines up to 7.1%, and bridges the gaps with fully supervised models.
Active learning is an important technique for low-resource sequence labeling tasks. However, current active sequence labeling methods use the queried samples alone in each iteration, which is an inefficient way of leveraging human annotations. We propose a simple but effective data augmentation method to improve label efficiency of active sequence labeling. Our method, SeqMix, simply augments the queried samples by generating extra labeled sequences in each iteration. The key difficulty is to generate plausible sequences along with token-level labels. In SeqMix, we address this challenge by performing mixup for both sequences and token-level labels of the queried samples. Furthermore, we design a discriminator during sequence mixup, which judges whether the generated sequences are plausible or not. Our experiments on Named Entity Recognition and Event Detection tasks show that SeqMix can improve the standard active sequence labeling method by 2.27%–3.75% in terms of F1 scores. The code and data for SeqMix can be found at https://github.com/rz-zhang/SeqMix.
Recent research has achieved impressive results in single-turn dialogue modelling. In the multi-turn setting, however, current models are still far from satisfactory. One major challenge is the frequently occurred coreference and information omission in our daily conversation, making it hard for machines to understand the real intention. In this paper, we propose rewriting the human utterance as a pre-process to help multi-turn dialgoue modelling. Each utterance is first rewritten to recover all coreferred and omitted information. The next processing steps are then performed based on the rewritten utterance. To properly train the utterance rewriter, we collect a new dataset with human annotations and introduce a Transformer-based utterance rewriting architecture using the pointer network. We show the proposed architecture achieves remarkably good performance on the utterance rewriting task. The trained utterance rewriter can be easily integrated into online chatbots and brings general improvement over different domains.