Ross McDermott


2018

pdf bib
Implicit and Explicit Aspect Extraction in Financial Microblogs
Thomas Gaillat | Bernardo Stearns | Gopal Sridhar | Ross McDermott | Manel Zarrouk | Brian Davis
Proceedings of the First Workshop on Economics and Natural Language Processing

This paper focuses on aspect extraction which is a sub-task of Aspect-based Sentiment Analysis. The goal is to report an extraction method of financial aspects in microblog messages. Our approach uses a stock-investment taxonomy for the identification of explicit and implicit aspects. We compare supervised and unsupervised methods to assign predefined categories at message level. Results on 7 aspect classes show 0.71 accuracy, while the 32 class classification gives 0.82 accuracy for messages containing explicit aspects and 0.35 for implicit aspects.