2024
pdf
bib
abs
Embedding and Gradient Say Wrong: A White-Box Method for Hallucination Detection
Xiaomeng Hu
|
Yiming Zhang
|
Ru Peng
|
Haozhe Zhang
|
Chenwei Wu
|
Gang Chen
|
Junbo Zhao
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
In recent years, large language models (LLMs) have achieved remarkable success in the field of natural language generation. Compared to previous small-scale models, they are capable of generating fluent output based on the provided prefix or prompt. However, one critical challenge — the *hallucination* problem — remains to be resolved. Generally, the community refers to the undetected hallucination scenario where the LLMs generate text unrelated to the input text or facts. In this study, we intend to model the distributional distance between the regular conditional output and the unconditional output, which is generated without a given input text. Based upon Taylor Expansion for this distance at the output probability space, our approach manages to leverage the embedding and first-order gradient information. The resulting approach is plug-and-play that can be easily adapted to any autoregressive LLM. On the hallucination benchmarks HADES and other datasets, our approach achieves state-of-the-art performance.
pdf
bib
abs
Predicting Rewards Alongside Tokens: Non-disruptive Parameter Insertion for Efficient Inference Intervention in Large Language Model
Chenhan Yuan
|
Fei Huang
|
Ru Peng
|
Keming Lu
|
Bowen Yu
|
Chang Zhou
|
Jingren Zhou
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Transformer-based large language models (LLMs) exhibit limitations such as generating unsafe responses, unreliable reasoning, etc. Existing inference intervention approaches attempt to mitigate these issues by finetuning additional models to produce calibration signals (such as rewards) that guide the LLM’s decoding process. However, this solution introduces substantial time and space overhead due to the separate models required. This work proposes Non-disruptive parameters insertion (Otter), inserting extra parameters into the transformer architecture to predict calibration signals along with the original LLM output. Otter offers state-of-the-art performance on multiple demanding tasks while saving up to 86.5% extra space and 98.5% extra time. Furthermore, Otter seamlessly integrates with existing inference engines, requiring only a one-line code change, and the original model response remains accessible after the parameter insertion.
pdf
bib
abs
DORY: Deliberative Prompt Recovery for LLM
Lirong Gao
|
Ru Peng
|
Yiming Zhang
|
Junbo Zhao
Findings of the Association for Computational Linguistics: ACL 2024
Prompt recovery in large language models (LLMs) is crucial for understanding how LLMs work and addressing concerns regarding privacy, copyright, etc. The trend towards inference-only APIs complicates this task by restricting access to essential outputs for recovery. To tackle this challenge, we extract prompt-related information from limited outputs and identify a strong(negative) correlation between output probability-based uncertainty and the success of prompt recovery.This finding led to the development of Deliberative PrOmpt RecoverY (DORY), our novel approach that leverages uncertainty to recover prompts accurately. DORY involves reconstructing drafts from outputs, refining these with hints, and filtering out noise based on uncertainty. Our evaluation shows that DORY outperforms existing baselines across diverse LLMs and prompt benchmarks, improving performance by approximately 10.82% and establishing a new state-of-the-art record in prompt recovery tasks. Significantly, DORY operates using a single LLM without any external resources or model, offering a cost-effective, user-friendly prompt recovery solution.
pdf
bib
abs
Inference-Time Decontamination: Reusing Leaked Benchmarks for Large Language Model Evaluation
Qin Zhu
|
Qinyuan Cheng
|
Runyu Peng
|
Xiaonan Li
|
Ru Peng
|
Tengxiao Liu
|
Xipeng Qiu
|
Xuanjing Huang
Findings of the Association for Computational Linguistics: EMNLP 2024
The training process of large language models (LLMs) often involves varying degrees of test data contamination. Although current LLMs are achieving increasingly better performance on various benchmarks, their performance in practical applications does not always match their benchmark results. Leakage of benchmarks can prevent the accurate assessment of LLMs’ true performance. However, constructing new benchmarks is costly, labor-intensive and still carries the risk of leakage. Therefore, in this paper, we ask the question Can we reuse these leaked benchmarks for LLM evaluation? We propose Inference-Time Decontamination (ITD) to address this issue by detecting and rewriting leaked samples without altering their difficulties. ITD can mitigate performance inflation caused by memorizing leaked benchmarks. Our proof-of-concept experiments demonstrate that ITD reduces inflated accuracy by 22.9% on GSM8K and 19.0% on MMLU. On MMLU, using Inference-time Decontamination can lead to a decrease in the results of Phi3 and Mistral by 6.7% and 3.6% respectively. We hope that ITD can provide more truthful evaluation results for large language models.
2022
pdf
bib
abs
Distill The Image to Nowhere: Inversion Knowledge Distillation for Multimodal Machine Translation
Ru Peng
|
Yawen Zeng
|
Jake Zhao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Past works on multimodal machine translation (MMT) elevate bilingual setup by incorporating additional aligned vision information.However, an image-must requirement of the multimodal dataset largely hinders MMT’s development — namely that it demands an aligned form of [image, source text, target text].This limitation is generally troublesome during the inference phase especially when the aligned image is not provided as in the normal NMT setup.Thus, in this work, we introduce IKD-MMT, a novel MMT framework to support the image-free inference phase via an inversion knowledge distillation scheme.In particular, a multimodal feature generator is executed with a knowledge distillation module, which directly generates the multimodal feature from (only) source texts as the input.While there have been a few prior works entertaining the possibility to support image-free inference for machine translation, their performances have yet to rival the image-must translation.In our experiments, we identify our method as the first image-free approach to comprehensively rival or even surpass (almost) all image-must frameworks, and achieved the state-of-the-art result on the often-used Multi30k benchmark. Our code and data are availableat: https://github.com/pengr/IKD-mmt/tree/master..