Ruben Cartuyvels


pdf bib
Implicit Temporal Reasoning for Evidence-Based Fact-Checking
Liesbeth Allein | Marlon Saelens | Ruben Cartuyvels | Marie-Francine Moens
Findings of the Association for Computational Linguistics: EACL 2023

Leveraging contextual knowledge has become standard practice in automated claim verification, yet the impact of temporal reasoning has been largely overlooked. Our study demonstrates that time positively influences the claim verification process of evidence-based fact-checking. The temporal aspects and relations between claims and evidence are first established through grounding on shared timelines, which are constructed using publication dates and time expressions extracted from their text. Temporal information is then provided to RNN-based and Transformer-based classifiers before or after claim and evidence encoding. Our time-aware fact-checking models surpass base models by up to 9% Micro F1 (64.17%) and 15% Macro F1 (47.43%) on the MultiFC dataset. They also outperform prior methods that explicitly model temporal relations between evidence. Our findings show that the presence of temporal information and the manner in which timelines are constructed greatly influence how fact-checking models determine the relevance and supporting or refuting character of evidence documents.


pdf bib
Autoregressive Reasoning over Chains of Facts with Transformers
Ruben Cartuyvels | Graham Spinks | Marie-Francine Moens
Proceedings of the 28th International Conference on Computational Linguistics

This paper proposes an iterative inference algorithm for multi-hop explanation regeneration, that retrieves relevant factual evidence in the form of text snippets, given a natural language question and its answer. Combining multiple sources of evidence or facts for multi-hop reasoning becomes increasingly hard when the number of sources needed to make an inference grows. Our algorithm copes with this by decomposing the selection of facts from a corpus autoregressively, conditioning the next iteration on previously selected facts. This allows us to use a pairwise learning-to-rank loss. We validate our method on datasets of the TextGraphs 2019 and 2020 Shared Tasks for explanation regeneration. Existing work on this task either evaluates facts in isolation or artificially limits the possible chains of facts, thus limiting multi-hop inference. We demonstrate that our algorithm, when used with a pre-trained transformer model, outperforms the previous state-of-the-art in terms of precision, training time and inference efficiency.