Ruben Wolhandler
2023
Revisiting Sentence Union Generation as a Testbed for Text Consolidation
Eran Hirsch
|
Valentina Pyatkin
|
Ruben Wolhandler
|
Avi Caciularu
|
Asi Shefer
|
Ido Dagan
Findings of the Association for Computational Linguistics: ACL 2023
Tasks involving text generation based on multiple input texts, such as multi-document summarization, long-form question answering and contemporary dialogue applications, challenge models for their ability to properly consolidate partly-overlapping multi-text information. However, these tasks entangle the consolidation phase with the often subjective and ill-defined content selection requirement, impeding proper assessment of models’ consolidation capabilities. In this paper, we suggest revisiting the sentence union generation task as an effective well-defined testbed for assessing text consolidation capabilities, decoupling the consolidation challenge from subjective content selection. To support research on this task, we present refined annotation methodology and tools for crowdsourcing sentence union, create the largest union dataset to date and provide an analysis of its rich coverage of various consolidation aspects. We then propose a comprehensive evaluation protocol for union generation, including both human and automatic evaluation. Finally, as baselines, we evaluate state-of-the-art language models on the task, along with a detailed analysis of their capacity to address multi-text consolidation challenges and their limitations.
2022
How “Multi” is Multi-Document Summarization?
Ruben Wolhandler
|
Arie Cattan
|
Ori Ernst
|
Ido Dagan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
The task of multi-document summarization (MDS) aims at models that, given multiple documents as input, are able to generate a summary that combines disperse information, originally spread __across__ these documents. Accordingly, it is expected that both reference summaries in MDS datasets, as well as system summaries, would indeed be based on such dispersed information. In this paper, we argue for quantifying and assessing this expectation. To that end, we propose an automated measure for evaluating the degree to which a summary is “disperse”, in the sense of the number of source documents needed to cover its content. We apply our measure to empirically analyze several popular MDS datasets, with respect to their reference summaries, as well as the output of state-of-the-art systems. Our results show that certain MDS datasets barely require combining information from multiple documents, where a single document often covers the full summary content. Overall, we advocate using our metric for assessing and improving the degree to which summarization datasets require combining multi-document information, and similarly how summarization models actually meet this challenge.