Rui Fan
2025
Aspect-Based Sentiment Analysis with Syntax-Opinion-Sentiment Reasoning Chain
Rui Fan
|
Shu Li
|
Tingting He
|
Yu Liu
Proceedings of the 31st International Conference on Computational Linguistics
Despite the impressive capabilities of large language models (LLMs) in aspect-based sentiment analysis (ABSA), the role of syntactic information remains underexplored in LLMs. Syntactic structures are known to be crucial for capturing aspect-opinion relationships. To explore whether LLMs can effectively leverage syntactic information to improve ABSA performance, we propose a novel multi-step reasoning framework, the Syntax-Opinion-Sentiment Reasoning Chain (Syn-Chain). Syn-Chain sequentially analyzes syntactic dependencies, extracts opinions, and classifies sentiment. We introduce Syn-Chain into LLMs via zero-shot prompting, and results show that Syn-Chain significantly enhances ABSA performance, though smaller LLM exhibit weaker performance. Furthermore, we enhance smaller LLMs via distillation using GPT-3.5-generated Syn-Chain responses, achieving state-of-the-art ABSA performance. Our findings highlight the importance of syntactic information for improving LLMs in ABSA and offer valuable insights for future research.
2023
DSPM-NLG: A Dual Supervised Pre-trained Model for Few-shot Natural Language Generation in Task-oriented Dialogue System
Yufan Wang
|
Bowei Zou
|
Rui Fan
|
Ai Ti Aw
|
Tingting He
Findings of the Association for Computational Linguistics: ACL 2023
In few-shot settings, fully conveying the semantic information of the dialogue act is a crucial challenge for Natural Language Generation (NLG) in the task-oriented dialogue system. An interesting fact is that NLG and Spoken Language Understanding (SLU) are a natural dual problem pair. Suppose the response generated by the NLG module can be restored to the corresponding dialogue act by the SLU module, which reflects that the generated response fully conveys the semantic information of the dialogue act. Based on this idea, a novel Dual Supervised Pre-trained Model for a few-shot Natural Language Generation (DSPM-NLG) is proposed to regularize the pre-training process. We adopt a joint model with a dual supervised framework to learn the dual correlation between NLG and SLU from the perspective of probability. In addition, a slot-masked strategy is designed to enable the model to focus better on the key slot-value pairs. DSPM-NLG is continuously trained on existing public large-scale annotated data, which thoroughly learns the duality between two tasks to enhance the semantically controlling and generalization abilities of the pre-trained model. Experiments demonstrate that our proposed model performs outstandingly on the few-shot benchmark dataset and outperforms the previous SOTA results.
Making Pre-trained Language Models Better Learn Few-Shot Spoken Language Understanding in More Practical Scenarios
Yufan Wang
|
Jie Mei
|
Bowei Zou
|
Rui Fan
|
Tingting He
|
Ai Ti Aw
Findings of the Association for Computational Linguistics: ACL 2023
Most previous few-shot Spoken Language Understanding (SLU) models typically need to be trained on a set of data-rich source domains and adapt to the target domain with a few examples. In this paper, we explore a more practical scenario for few-shot SLU, in which we only assume access to a pre-trained language model and a few labeled examples without any other source domain data. We concentrate on understanding how far the few-shot SLU could be pushed in this setting. To this end, we develop a prompt-based intent detection model in few-shot settings, which leverages the BERT original pre-training next sentence prediction task and the prompt template to detect the user’s intent. For slot filling, we propose an approach of reconstructing slot labels, which reduces the training complexity by reducing the number of slot labels in few-shot settings. To evaluate the few-shot SLU for a more practical scenario, we present two benchmarks, FewShotATIS and FewShotSNIPS. And a dynamic sampling strategy is designed to construct the two datasets according to the learning difficulty of each intent and slot. Experiments on FewShotATIS and FewShotSNIPS demonstrate that our proposed model achieves state-of-the-art performance.