Rui Shen
2024
L2CEval: Evaluating Language-to-Code Generation Capabilities of Large Language Models
Ansong Ni
|
Pengcheng Yin
|
Yilun Zhao
|
Martin Riddell
|
Troy Feng
|
Rui Shen
|
Stephen Yin
|
Ye Liu
|
Semih Yavuz
|
Caiming Xiong
|
Shafiq Joty
|
Yingbo Zhou
|
Dragomir Radev
|
Arman Cohan
|
Arman Cohan
Transactions of the Association for Computational Linguistics, Volume 12
Recently, large language models (LLMs), especially those that are pretrained on code, have demonstrated strong capabilities in generating programs from natural language inputs. Despite promising results, there is a notable lack of a comprehensive evaluation of these models’ language-to-code generation capabilities. Existing studies often focus on specific tasks, model architectures, or learning paradigms, leading to a fragmented understanding of the overall landscape. In this work, we present L2CEval, a systematic evaluation of the language-to-code generation capabilities of LLMs on 7 tasks across the domain spectrum of semantic parsing, math reasoning, and Python programming, analyzing the factors that potentially affect their performance, such as model size, pretraining data, instruction tuning, and different prompting methods. In addition, we assess confidence calibration, and conduct human evaluations to identify typical failures across different tasks and models. L2CEval offers a comprehensive understanding of the capabilities and limitations of LLMs in language-to-code generation. We release the evaluation framework1 and all model outputs, hoping to lay the groundwork for further future research. All future evaluations (e.g., LLaMA-3, StarCoder2, etc) will be updated on the project website: https://l2c-eval.github.io/.
P-FOLIO: Evaluating and Improving Logical Reasoning with Abundant Human-Written Reasoning Chains
Simeng Han
|
Aaron Yu
|
Rui Shen
|
Zhenting Qi
|
Martin Riddell
|
Wenfei Zhou
|
Yujie Qiao
|
Yilun Zhao
|
Semih Yavuz
|
Ye Liu
|
Shafiq Joty
|
Yingbo Zhou
|
Caiming Xiong
|
Dragomir Radev
|
Rex Ying
|
Arman Cohan
Findings of the Association for Computational Linguistics: EMNLP 2024
Existing methods on understanding the capabilities of LLMs in logical reasoning rely on binary entailment classification or synthetically derived rationales, which are not sufficient for properly assessing model’s capabilities. We present P-FOLIO, a human-annotated dataset consisting of diverse and complex reasoning chains for a set of realistic logical reasoning stories also written by humans. P-FOLIO is collected with an annotation protocol that facilitates humans to annotate well-structured natural language proofs for first-order logic reasoning problems in a step-by-step manner. The number of reasoning steps in P-FOLIO span from 0 to 20. We further use P-FOLIO to evaluate and improve large-language-model (LLM) reasoning capabilities. We evaluate LLM reasoning capabilities at a fine granularity via single-step inference rule classification, with more diverse inference rules of more diverse and higher levels of complexities than previous works. Given that a single model-generated reasoning chain could take a completely different path than the human-annotated one, we sample multiple reasoning chains from a model and use pass@k metrics for evaluating the quality of model-generated reasoning chains. We show that human-written reasoning chains significantly boost the logical reasoning capabilities of LLMs via many-shot prompting and fine-tuning. Furthermore, fine-tuning Llam3-7B on P-FOLIO improves the model performance by 10% or more on three other out-of-domain logical reasoning datasets.
Search
Co-authors
- Arman Cohan 3
- Yilun Zhao 2
- Martin Riddell 2
- Ye Liu 2
- Semih Yavuz 2
- show all...