Rui Song


2022

pdf bib
Locally Aggregated Feature Attribution on Natural Language Model Understanding
Sheng Zhang | Jin Wang | Haitao Jiang | Rui Song
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

With the growing popularity of deep-learning models, model understanding becomes more important. Much effort has been devoted to demystify deep neural networks for better explainability. Some feature attribution methods have shown promising results in computer vision, especially the gradient-based methods where effectively smoothing the gradients with reference data is the key to a robust and faithful result. However, direct application of these gradient-based methods to NLP tasks is not trivial due to the fact that the input consists of discrete tokens and the “reference” tokens are not explicitly defined. In this work, we propose Locally Aggregated Feature Attribution (LAFA), a novel gradient-based feature attribution method for NLP models. Instead of relying on obscure reference tokens, it smooths gradients by aggregating similar reference texts derived from language model embeddings. For evaluation purpose, we also design experiments on different NLP tasks including Entity Recognition and Sentiment Analysis on public datasets and key words detection on constructed Amazon catalogue dataset. The superior performance of the proposed method is demonstrated through experiments.

2020

pdf bib
Knowledge-guided Open Attribute Value Extraction with Reinforcement Learning
Ye Liu | Sheng Zhang | Rui Song | Suo Feng | Yanghua Xiao
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Open attribute value extraction for emerging entities is an important but challenging task. A lot of previous works formulate the problem as a question-answering (QA) task. While the collections of articles from web corpus provide updated information about the emerging entities, the retrieved texts can be noisy, irrelevant, thus leading to inaccurate answers. Effectively filtering out noisy articles as well as bad answers is the key to improve extraction accuracy. Knowledge graph (KG), which contains rich, well organized information about entities, provides a good resource to address the challenge. In this work, we propose a knowledge-guided reinforcement learning (RL) framework for open attribute value extraction. Informed by relevant knowledge in KG, we trained a deep Q-network to sequentially compare extracted answers to improve extraction accuracy. The proposed framework is applicable to different information extraction system. Our experimental results show that our method outperforms the baselines by 16.5 - 27.8%.

2018

pdf bib
The USTC-NEL Speech Translation system at IWSLT 2018
Dan Liu | Junhua Liu | Wu Guo | Shifu Xiong | Zhiqiang Ma | Rui Song | Chongliang Wu | Quan Liu
Proceedings of the 15th International Conference on Spoken Language Translation

This paper describes the USTC-NEL (short for ”National Engineering Laboratory for Speech and Language Information Processing University of science and technology of china”) system to the speech translation task of the IWSLT Evaluation 2018. The system is a conventional pipeline system which contains 3 modules: speech recognition, post-processing and machine translation. We train a group of hybrid-HMM models for our speech recognition, and for machine translation we train transformer based neural machine translation models with speech recognition output style text as input. Experiments conducted on the IWSLT 2018 task indicate that, compared to baseline system from KIT, our system achieved 14.9 BLEU improvement.