Rui Xie


2024

pdf bib
Enhancing In-Context Learning via Implicit Demonstration Augmentation
Xiaoling Zhou | Wei Ye | Yidong Wang | Chaoya Jiang | Zhemg Lee | Rui Xie | Shikun Zhang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The emergence of in-context learning (ICL) enables large pre-trained language models (PLMs) to make predictions for unseen inputs without updating parameters. Despite its potential, ICL’s effectiveness heavily relies on the quality, quantity, and permutation of demonstrations, commonly leading to suboptimal and unstable performance. In this paper, we tackle this challenge for the first time from the perspective of demonstration augmentation. Specifically, we start with enriching representations of demonstrations by leveraging their deep feature distribution. We then theoretically reveal that when the number of augmented copies approaches infinity, the augmentation is approximately equal to a novel logit calibration mechanism integrated with specific statistical properties. This insight results in a simple yet highly efficient method that significantly improves the average and worst-case accuracy across diverse PLMs and tasks. Moreover, our method effectively reduces performance variance among varying demonstrations, permutations, and templates, and displays the capability to address imbalanced class distributions.

pdf bib
CR-UTP: Certified Robustness against Universal Text Perturbations on Large Language Models
Qian Lou | Xin Liang | Jiaqi Xue | Yancheng Zhang | Rui Xie | Mengxin Zheng
Findings of the Association for Computational Linguistics: ACL 2024

It is imperative to ensure the stability of every prediction made by a language model; that is, a language’s prediction should remain consistent despite minor input variations, like word substitutions. In this paper, we investigate the problem of certifying a language model’s robustness against Universal Text Perturbations (UTPs), which have been widely used in universal adversarial attacks and backdoor attacks. Existing certified robustness based on random smoothing has shown considerable promise in certifying the input-specific text perturbations (ISTPs), operating under the assumption that any random alteration of a sample’s clean or adversarial words would negate the impact of sample-wise perturbations. However, with UTPs, masking only the adversarial words can eliminate the attack. A naive method is to simply increase the masking ratio and the likelihood of masking attack tokens, but it leads to a significant reduction in both certified accuracy and the certified radius due to input corruption by extensive masking. To solve this challenge, we introduce a novel approach, the superior prompt search method, designed to identify a superior prompt that maintains higher certified accuracy under extensive masking. Additionally, we theoretically motivate why ensembles are a particularly suitable choice as base prompts for random smoothing. The method is denoted by superior prompt ensembling technique. We also empirically confirm this technique, obtaining state-of-the-art results in multiple settings. These methodologies, for the first time, enable high certified accuracy against both UTPs and ISTPs. The source code of CR-UTP is available at https://github.com/UCF-ML-Research/CR-UTP.

pdf bib
PURE: Aligning LLM via Pluggable Query Reformulation for Enhanced Helpfulness
Wenjin Yao | Yidong Wang | Zhuohao Yu | Rui Xie | Shikun Zhang | Wei Ye
Findings of the Association for Computational Linguistics: EMNLP 2024

Aligning large language models (LLMs) with human values and preferences is a significant challenge. Training-based methods, such as reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO), require substantial resources and are impractical for API-based LLMs. Post-processing methods decouple alignment from training but may incur high multiple-time inference costs or rely on less knowledgeable lightweight models for response refinement. In this paper, we propose a new LLM alignment paradigm from the perspective of pre-processing. By reformulating risky queries into highly relevant yet harmless ones before feeding them into LLMs, our method eliminates the high costs of training base LLMs, efficiently applies to both open-source and proprietary LLMs, and achieves a promising balance of harmlessness and helpfulness. For example, with Vicuna-7B as the LLM to align, it enhances helpfulness by 28.52% over DPO while maintaining comparable harmlessness levels. When applied to Gemini-1.5-pro, it increased harmlessness and helpfulness by 7.04% and 29.37%, respectively.

2023

pdf bib
Causality-aware Concept Extraction based on Knowledge-guided Prompting
Siyu Yuan | Deqing Yang | Jinxi Liu | Shuyu Tian | Jiaqing Liang | Yanghua Xiao | Rui Xie
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Concepts benefit natural language understanding but are far from complete in existing knowledge graphs (KGs). Recently, pre-trained language models (PLMs) have been widely used in text-based concept extraction (CE). However, PLMs tend to mine the co-occurrence associations from massive corpus as pre-trained knowledge rather than the real causal effect between tokens. As a result, the pre-trained knowledge confounds PLMs to extract biased concepts based on spurious co-occurrence correlations, inevitably resulting in low precision. In this paper, through the lens of a Structural Causal Model (SCM), we propose equipping the PLM-based extractor with a knowledge-guided prompt as an intervention to alleviate concept bias. The prompt adopts the topic of the given entity from the existing knowledge in KGs to mitigate the spurious co-occurrence correlations between entities and biased concepts. Our extensive experiments on representative multilingual KG datasets justify that our proposed prompt can effectively alleviate concept bias and improve the performance of PLM-based CE models.

pdf bib
Exploiting Pseudo Image Captions for Multimodal Summarization
Chaoya Jiang | Rui Xie | Wei Ye | Jinan Sun | Shikun Zhang
Findings of the Association for Computational Linguistics: ACL 2023

Multimodal summarization with multimodal output (MSMO) faces a challenging semantic gap between visual and textual modalities due to the lack of reference images for training. Our pilot investigation indicates that image captions, which naturally connect texts and images, can significantly benefit MSMO. However, exposure of image captions during training is inconsistent with MSMO’s task settings, where prior cross-modal alignment information is excluded to guarantee the generalization of cross-modal semantic modeling. To this end, we propose a novel coarse-to-fine image-text alignment mechanism to identify the most relevant sentence of each image in a document, resembling the role of image captions in capturing visual knowledge and bridging the cross-modal semantic gap. Equipped with this alignment mechanism, our method easily yet impressively sets up state-of-the-art performances on all intermodality and intramodality metrics (e.g., more than 10% relative improvement on image recommendation precision). Further experiments reveal the correlation between image captions and text summaries, and prove that the pseudo image captions we generated are even better than the original ones in terms of promoting multimodal summarization.

2022

pdf bib
An Effective and Efficient Entity Alignment Decoding Algorithm via Third-Order Tensor Isomorphism
Xin Mao | Meirong Ma | Hao Yuan | Jianchao Zhu | ZongYu Wang | Rui Xie | Wei Wu | Man Lan
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Entity alignment (EA) aims to discover the equivalent entity pairs between KGs, which is a crucial step for integrating multi-source KGs.For a long time, most researchers have regarded EA as a pure graph representation learning task and focused on improving graph encoders while paying little attention to the decoding process. In this paper, we propose an effective and efficient EA Decoding Algorithm via Third-order Tensor Isomorphism (DATTI).Specifically, we derive two sets of isomorphism equations: (1) Adjacency tensor isomorphism equations and (2) Gramian tensor isomorphism equations. By combining these equations, DATTI could effectively utilize the adjacency and inner correlation isomorphisms of KGs to enhance the decoding process of EA.Extensive experiments on public datasets indicate that our decoding algorithm can deliver significant performance improvements even on the most advanced EA methods, while the extra required time is less than 3 seconds.

pdf bib
Can Pre-trained Language Models Interpret Similes as Smart as Human?
Qianyu He | Sijie Cheng | Zhixu Li | Rui Xie | Yanghua Xiao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Simile interpretation is a crucial task in natural language processing. Nowadays, pre-trained language models (PLMs) have achieved state-of-the-art performance on many tasks. However, it remains under-explored whether PLMs can interpret similes or not. In this paper, we investigate the ability of PLMs in simile interpretation by designing a novel task named Simile Property Probing, i.e., to let the PLMs infer the shared properties of similes. We construct our simile property probing datasets from both general textual corpora and human-designed questions, containing 1,633 examples covering seven main categories. Our empirical study based on the constructed datasets shows that PLMs can infer similes’ shared properties while still underperforming humans. To bridge the gap with human performance, we additionally design a knowledge-enhanced training objective by incorporating the simile knowledge into PLMs via knowledge embedding methods. Our method results in a gain of 8.58% in the probing task and 1.37% in the downstream task of sentiment classification. The datasets and code are publicly available at https://github.com/Abbey4799/PLMs-Interpret-Simile.

pdf bib
PlugAT: A Plug and Play Module to Defend against Textual Adversarial Attack
Rui Zheng | Rong Bao | Qin Liu | Tao Gui | Qi Zhang | Xuanjing Huang | Rui Xie | Wei Wu
Proceedings of the 29th International Conference on Computational Linguistics

Adversarial training, which minimizes the loss of adversarially perturbed examples, has received considerable attention. However, these methods require modifying all model parameters and optimizing the model from scratch, which is parameter inefficient and unfriendly to the already deployed models. As an alternative, we propose a pluggable defense module PlugAT, to provide robust predictions by adding a few trainable parameters to the model inputs while keeping the original model frozen. To reduce the potential side effects of using defense modules, we further propose a novel forgetting restricted adversarial training, which filters out bad adversarial examples that impair the performance of original ones. The PlugAT-equipped BERT model substantially improves robustness over several strong baselines on various text classification tasks, whilst training only 9.1% parameters. We observe that defense modules trained under the same model architecture have domain adaptation ability between similar text classification datasets.

pdf bib
Making Parameter-efficient Tuning More Efficient: A Unified Framework for Classification Tasks
Xin Zhou | Ruotian Ma | Yicheng Zou | Xuanting Chen | Tao Gui | Qi Zhang | Xuanjing Huang | Rui Xie | Wei Wu
Proceedings of the 29th International Conference on Computational Linguistics

Large pre-trained language models (PLMs) have demonstrated superior performance in industrial applications. Recent studies have explored parameter-efficient PLM tuning, which only updates a small amount of task-specific parameters while achieving both high efficiency and comparable performance against standard fine-tuning. However, all these methods ignore the inefficiency problem caused by the task-specific output layers, which is inflexible for us to re-use PLMs and introduces non-negligible parameters. In this work, we focus on the text classification task and propose plugin-tuning, a framework that further improves the efficiency of existing parameter-efficient methods with a unified classifier. Specifically, we re-formulate both token and sentence classification tasks into a unified language modeling task, and map label spaces of different tasks into the same vocabulary space. In this way, we can directly re-use the language modeling heads of PLMs, avoiding introducing extra parameters for different tasks. We conduct experiments on six classification benchmarks. The experimental results show that plugin-tuning can achieve comparable performance against fine-tuned PLMs, while further saving around 50% parameters on top of other parameter-efficient methods.

2020

pdf bib
Graph Enhanced Dual Attention Network for Document-Level Relation Extraction
Bo Li | Wei Ye | Zhonghao Sheng | Rui Xie | Xiangyu Xi | Shikun Zhang
Proceedings of the 28th International Conference on Computational Linguistics

Document-level relation extraction requires inter-sentence reasoning capabilities to capture local and global contextual information for multiple relational facts. To improve inter-sentence reasoning, we propose to characterize the complex interaction between sentences and potential relation instances via a Graph Enhanced Dual Attention network (GEDA). In GEDA, sentence representation generated by the sentence-to-relation (S2R) attention is refined and synthesized by a Heterogeneous Graph Convolutional Network before being fed into the relation-to-sentence (R2S) attention . We further design a simple yet effective regularizer based on the natural duality of the S2R and R2S attention, whose weights are also supervised by the supporting evidence of relation instances during training. An extensive set of experiments on an existing large-scale dataset show that our model achieve competitive performance, especially for the inter-sentence relation extraction, while the neural predictions can also be interpretable and easily observed.

2019

pdf bib
Exploiting Entity BIO Tag Embeddings and Multi-task Learning for Relation Extraction with Imbalanced Data
Wei Ye | Bo Li | Rui Xie | Zhonghao Sheng | Long Chen | Shikun Zhang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In practical scenario, relation extraction needs to first identify entity pairs that have relation and then assign a correct relation class. However, the number of non-relation entity pairs in context (negative instances) usually far exceeds the others (positive instances), which negatively affects a model’s performance. To mitigate this problem, we propose a multi-task architecture which jointly trains a model to perform relation identification with cross-entropy loss and relation classification with ranking loss. Meanwhile, we observe that a sentence may have multiple entities and relation mentions, and the patterns in which the entities appear in a sentence may contain useful semantic information that can be utilized to distinguish between positive and negative instances. Thus we further incorporate the embeddings of character-wise/word-wise BIO tag from the named entity recognition task into character/word embeddings to enrich the input representation. Experiment results show that our proposed approach can significantly improve the performance of a baseline model with more than 10% absolute increase in F1-score, and outperform the state-of-the-art models on ACE 2005 Chinese and English corpus. Moreover, BIO tag embeddings are particularly effective and can be used to improve other models as well.