Rui Xing


pdf bib
Automatic Explanation Generation For Climate Science Claims
Rui Xing | Shraey Bhatia | Timothy Baldwin | Jey Han Lau
Proceedings of the The 20th Annual Workshop of the Australasian Language Technology Association

Climate change is an existential threat to humanity, the proliferation of unsubstantiated claims relating to climate science is manipulating public perception, motivating the need for fact-checking in climate science. In this work, we draw on recent work that uses retrieval-augmented generation for veracity prediction and explanation generation, in framing explanation generation as a query-focused multi-document summarization task. We adapt PRIMERA to the climate science domain by adding additional global attention on claims. Through automatic evaluation and qualitative analysis, we demonstrate that our method is effective at generating explanations.


pdf bib
Distant Supervised Relation Extraction with Separate Head-Tail CNN
Rui Xing | Jie Luo
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)

Distant supervised relation extraction is an efficient and effective strategy to find relations between entities in texts. However, it inevitably suffers from mislabeling problem and the noisy data will hinder the performance. In this paper, we propose the Separate Head-Tail Convolution Neural Network (SHTCNN), a novel neural relation extraction framework to alleviate this issue. In this method, we apply separate convolution and pooling to the head and tail entity respectively for extracting better semantic features of sentences, and coarse-to-fine strategy to filter out instances which do not have actual relations in order to alleviate noisy data issues. Experiments on a widely used dataset show that our model achieves significant and consistent improvements in relation extraction compared to statistical and vanilla CNN-based methods.