Ruichen Li


pdf bib
AlignScore: Evaluating Factual Consistency with A Unified Alignment Function
Yuheng Zha | Yichi Yang | Ruichen Li | Zhiting Hu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Many text generation applications require the generated text to be factually consistent with input information. Automatic evaluation of factual consistency is challenging. Previous work has developed various metrics that often depend on specific functions, such as natural language inference (NLI) or question answering (QA), trained on limited data. Those metrics thus can hardly assess diverse factual inconsistencies (e.g., contradictions, hallucinations) that occur in varying inputs/outputs (e.g., sentences, documents) from different tasks. In this paper, we propose AlignScore, a new holistic metric that applies to a variety of factual inconsistency scenarios as above. AlignScore is based on a general function of information alignment between two arbitrary text pieces. Crucially, we develop a unified training framework of the alignment function by integrating a large diversity of data sources, resulting in 4.7M training examples from 7 well-established tasks (NLI, QA, paraphrasing, fact verification, information retrieval, semantic similarity, and summarization). We conduct extensive experiments on large-scale benchmarks including 22 evaluation datasets, where 19 of the datasets were never seen in the alignment training. AlignScore achieves substantial improvement over a wide range of previous metrics. Moreover, AlignScore (355M parameters) matches or even outperforms metrics based on ChatGPT and GPT-4 that are orders of magnitude larger.


pdf bib
DialogueEIN: Emotion Interaction Network for Dialogue Affective Analysis
Yuchen Liu | Jinming Zhao | Jingwen Hu | Ruichen Li | Qin Jin
Proceedings of the 29th International Conference on Computational Linguistics

Emotion Recognition in Conversation (ERC) has attracted increasing attention in the affective computing research field. Previous works have mainly focused on modeling the semantic interactions in the dialogue and implicitly inferring the evolution of the speakers’ emotional states. Few works have considered the emotional interactions, which directly reflect the emotional evolution of speakers in the dialogue. According to psychological and behavioral studies, the emotional inertia and emotional stimulus are important factors that affect the speaker’s emotional state in conversations. In this work, we propose a novel Dialogue Emotion Interaction Network, DialogueEIN, to explicitly model the intra-speaker, inter-speaker, global and local emotional interactions to respectively simulate the emotional inertia, emotional stimulus, global and local emotional evolution in dialogues. Extensive experiments on four ERC benchmark datasets, IEMOCAP, MELD, EmoryNLP and DailyDialog, show that our proposed DialogueEIN considering emotional interaction factors can achieve superior or competitive performance compared to state-of-the-art methods. Our codes and models are released.


pdf bib
Missing Modality Imagination Network for Emotion Recognition with Uncertain Missing Modalities
Jinming Zhao | Ruichen Li | Qin Jin
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Multimodal fusion has been proved to improve emotion recognition performance in previous works. However, in real-world applications, we often encounter the problem of missing modality, and which modalities will be missing is uncertain. It makes the fixed multimodal fusion fail in such cases. In this work, we propose a unified model, Missing Modality Imagination Network (MMIN), to deal with the uncertain missing modality problem. MMIN learns robust joint multimodal representations, which can predict the representation of any missing modality given available modalities under different missing modality conditions. Comprehensive experiments on two benchmark datasets demonstrate that the unified MMIN model significantly improves emotion recognition performance under both uncertain missing-modality testing conditions and full-modality ideal testing condition. The code will be available at