Ruifang He


2021

pdf bib
CRFR: Improving Conversational Recommender Systems via Flexible Fragments Reasoning on Knowledge Graphs
Jinfeng Zhou | Bo Wang | Ruifang He | Yuexian Hou
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Although paths of user interests shift in knowledge graphs (KGs) can benefit conversational recommender systems (CRS), explicit reasoning on KGs has not been well considered in CRS, due to the complex of high-order and incomplete paths. We propose CRFR, which effectively does explicit multi-hop reasoning on KGs with a conversational context-based reinforcement learning model. Considering the incompleteness of KGs, instead of learning single complete reasoning path, CRFR flexibly learns multiple reasoning fragments which are likely contained in the complete paths of interests shift. A fragments-aware unified model is then designed to fuse the fragments information from item-oriented and concept-oriented KGs to enhance the CRS response with entities and words from the fragments. Extensive experiments demonstrate CRFR’s SOTA performance on recommendation, conversation and conversation interpretability.

2020

pdf bib
TransS-Driven Joint Learning Architecture for Implicit Discourse Relation Recognition
Ruifang He | Jian Wang | Fengyu Guo | Yugui Han
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Implicit discourse relation recognition is a challenging task due to the lack of connectives as strong linguistic clues. Previous methods primarily encode two arguments separately or extract the specific interaction patterns for the task, which have not fully exploited the annotated relation signal. Therefore, we propose a novel TransS-driven joint learning architecture to address the issues. Specifically, based on the multi-level encoder, we 1) translate discourse relations in low-dimensional embedding space (called TransS), which could mine the latent geometric structure information of argument-relation instances; 2) further exploit the semantic features of arguments to assist discourse understanding; 3) jointly learn 1) and 2) to mutually reinforce each other to obtain the better argument representations, so as to improve the performance of the task. Extensive experimental results on the Penn Discourse TreeBank (PDTB) show that our model achieves competitive results against several state-of-the-art systems.

pdf bib
TWEETSUM: Event oriented Social Summarization Dataset
Ruifang He | Liangliang Zhao | Huanyu Liu
Proceedings of the 28th International Conference on Computational Linguistics

With social media becoming popular, a vast of short and noisy messages are produced by millions of users when a hot event happens. Developing social summarization systems becomes more and more critical for people to quickly grasp core and essential information. However, the publicly available and high-quality large scale social summarization dataset is rare. Constructing such corpus is not easy and very expensive since short texts have very complex social characteristics. In this paper, we construct TWEETSUM, a new event-oriented dataset for social summarization. The original data is collected from twitter and contains 12 real world hot events with a total of 44,034 tweets and 11,240 users. Each event has four expert summaries, and we also have the annotation quality evaluation. In addition, we collect additional social signals (i.e. user relations, hashtags and user profiles) and further establish user relation network for each event. Besides the detailed dataset description, we show the performance of several typical extractive summarization methods on TWEETSUM to establish baselines. For further researches, we will release this dataset to the public.

2019

pdf bib
A Semi-Supervised Stable Variational Network for Promoting Replier-Consistency in Dialogue Generation
Jinxin Chang | Ruifang He | Longbiao Wang | Xiangyu Zhao | Ting Yang | Ruifang Wang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Neural sequence-to-sequence models for dialog systems suffer from the problem of favoring uninformative and non replier-specific responses due to lack of the global and relevant information guidance. The existing methods model the generation process by leveraging the neural variational network with simple Gaussian. However, the sampled information from latent space usually becomes useless due to the KL divergence vanishing issue, and the highly abstractive global variables easily dilute the personal features of replier, leading to a non replier-specific response. Therefore, a novel Semi-Supervised Stable Variational Network (SSVN) is proposed to address these issues. We use a unit hypersperical distribution, namely the von Mises-Fisher (vMF), as the latent space of a semi-supervised model, which can obtain the stable KL performance by setting a fixed variance and hence enhance the global information representation. Meanwhile, an unsupervised extractor is introduced to automatically distill the replier-tailored feature which is then injected into a supervised generator to encourage the replier-consistency. Experimental results on two large conversation datasets show that our model outperforms the competitive baseline models significantly, and can generate diverse and replier-specific responses.

2018

pdf bib
Implicit Discourse Relation Recognition using Neural Tensor Network with Interactive Attention and Sparse Learning
Fengyu Guo | Ruifang He | Di Jin | Jianwu Dang | Longbiao Wang | Xiangang Li
Proceedings of the 27th International Conference on Computational Linguistics

Implicit discourse relation recognition aims to understand and annotate the latent relations between two discourse arguments, such as temporal, comparison, etc. Most previous methods encode two discourse arguments separately, the ones considering pair specific clues ignore the bidirectional interactions between two arguments and the sparsity of pair patterns. In this paper, we propose a novel neural Tensor network framework with Interactive Attention and Sparse Learning (TIASL) for implicit discourse relation recognition. (1) We mine the most correlated word pairs from two discourse arguments to model pair specific clues, and integrate them as interactive attention into argument representations produced by the bidirectional long short-term memory network. Meanwhile, (2) the neural tensor network with sparse constraint is proposed to explore the deeper and the more important pair patterns so as to fully recognize discourse relations. The experimental results on PDTB show that our proposed TIASL framework is effective.

pdf bib
Interaction-Aware Topic Model for Microblog Conversations through Network Embedding and User Attention
Ruifang He | Xuefei Zhang | Di Jin | Longbiao Wang | Jianwu Dang | Xiangang Li
Proceedings of the 27th International Conference on Computational Linguistics

Traditional topic models are insufficient for topic extraction in social media. The existing methods only consider text information or simultaneously model the posts and the static characteristics of social media. They ignore that one discusses diverse topics when dynamically interacting with different people. Moreover, people who talk about the same topic have different effects on the topic. In this paper, we propose an Interaction-Aware Topic Model (IATM) for microblog conversations by integrating network embedding and user attention. A conversation network linking users based on reposting and replying relationship is constructed to mine the dynamic user behaviours. We model dynamic interactions and user attention so as to learn interaction-aware edge embeddings with social context. Then they are incorporated into neural variational inference for generating the more consistent topics. The experiments on three real-world datasets show that our proposed model is effective.

2017

pdf bib
Exploiting Document Level Information to Improve Event Detection via Recurrent Neural Networks
Shaoyang Duan | Ruifang He | Wenli Zhao
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

This paper tackles the task of event detection, which involves identifying and categorizing events. The previous work mainly exist two problems: (1) the traditional feature-based methods apply cross-sentence information, yet need taking a large amount of human effort to design complicated feature sets and inference rules; (2) the representation-based methods though overcome the problem of manually extracting features, while just depend on local sentence representation. Considering local sentence context is insufficient to resolve ambiguities in identifying particular event types, therefore, we propose a novel document level Recurrent Neural Networks (DLRNN) model, which can automatically extract cross-sentence clues to improve sentence level event detection without designing complex reasoning rules. Experiment results show that our approach outperforms other state-of-the-art methods on ACE 2005 dataset without external knowledge base.