Ruize Gao


2023

pdf bib
IMTLab: An Open-Source Platform for Building, Evaluating, and Diagnosing Interactive Machine Translation Systems
Xu Huang | Zhirui Zhang | Ruize Gao | Yichao Du | Lemao Liu | Guoping Huang | Shuming Shi | Jiajun Chen | Shujian Huang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

We present IMTLab, an open-source end-to-end interactive machine translation (IMT) system platform that enables researchers to quickly build IMT systems with state-of-the-art models, perform an end-to-end evaluation, and diagnose the weakness of systems. IMTLab treats the whole interactive translation process as a task-oriented dialogue with a human-in-the-loop setting, in which human interventions can be explicitly incorporated to produce high-quality, error-free translations. To this end, a general communication interface is designed to support the flexible IMT architectures and user policies. Based on the proposed design, we construct a simulated and real interactive environment to achieve end-to-end evaluation and leverage the framework to systematically evaluate previous IMT systems. Our simulated and manual experiments show that the prefix-constrained decoding approach still gains the lowest editing cost in the end-to-end evaluation, while BiTIIMT achieves comparable editing cost with a better interactive experience.

pdf bib
Nearest Neighbor Machine Translation is Meta-Optimizer on Output Projection Layer
Ruize Gao | Zhirui Zhang | Yichao Du | Lemao Liu | Rui Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Nearest Neighbor Machine Translation (kNN-MT) has achieved great success in domain adaptation tasks by integrating pre-trained Neural Machine Translation (NMT) models with domain-specific token-level retrieval. However, the reasons underlying its success have not been thoroughly investigated. In this paper, we comprehensively analyze kNN-MT through theoretical and empirical studies. Initially, we provide new insights into the working mechanism of kNN-MT as an efficient technique to implicitly execute gradient descent on the output projection layer of NMT, indicating that it is a specific case of model fine-tuning. Subsequently, we conduct multi-domain experiments and word-level analysis to examine the differences in performance between kNN-MT and entire-model fine-tuning. Our findings suggest that: (i) Incorporating kNN-MT with adapters yields comparable translation performance to fine-tuning on in-domain test sets, while achieving better performance on out-of-domain test sets; (ii) Fine-tuning significantly outperforms kNN-MT on the recall of in-domain low-frequency words, but this gap could be bridged by optimizing the context representations with additional adapter layers.