Ruizhe Wang


2022

pdf bib
WatClaimCheck: A new Dataset for Claim Entailment and Inference
Kashif Khan | Ruizhe Wang | Pascal Poupart
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We contribute a new dataset for the task of automated fact checking and an evaluation of state of the art algorithms. The dataset includes claims (from speeches, interviews, social media and news articles), review articles published by professional fact checkers and premise articles used by those professional fact checkers to support their review and verify the veracity of the claims. An important challenge in the use of premise articles is the identification of relevant passages that will help to infer the veracity of a claim. We show that transferring a dense passage retrieval model trained with review articles improves the retrieval quality of passages in premise articles. We report results for the prediction of claim veracity by inference from premise articles.