Runing Yang
2024
Can We Trust the Performance Evaluation of Uncertainty Estimation Methods in Text Summarization?
Jianfeng He
|
Runing Yang
|
Linlin Yu
|
Changbin Li
|
Ruoxi Jia
|
Feng Chen
|
Ming Jin
|
Chang-Tien Lu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Text summarization, a key natural language generation (NLG) task, is vital in various domains. However, the high cost of inaccurate summaries in risk-critical applications, particularly those involving human-in-the-loop decision-making, raises concerns about the reliability of uncertainty estimation on text summarization (UE-TS) evaluation methods. This concern stems from the dependency of uncertainty model metrics on diverse and potentially conflicting NLG metrics. To address this issue, we introduce a comprehensive UE-TS benchmark incorporating 31 NLG metrics across four dimensions. The benchmark evaluates the uncertainty estimation capabilities of two large language models and one pre-trained language model on three datasets, with human-annotation analysis incorporated where applicable. We also assess the performance of 14 common uncertainty estimation methods within this benchmark. Our findings emphasize the importance of considering multiple uncorrelated NLG metrics and diverse uncertainty estimation methods to ensure reliable and efficient evaluation of UE-TS techniques. Our code and data are available: https://github.com/he159ok/Benchmark-of-Uncertainty-Estimation-Methods-in-Text-Summarization.
InternalInspector I2: Robust Confidence Estimation in LLMs through Internal States
Mohammad Beigi
|
Ying Shen
|
Runing Yang
|
Zihao Lin
|
Qifan Wang
|
Ankith Mohan
|
Jianfeng He
|
Ming Jin
|
Chang-Tien Lu
|
Lifu Huang
Findings of the Association for Computational Linguistics: EMNLP 2024
Despite their vast capabilities, Large Language Models (LLMs) often struggle with generating reliable outputs, frequently producing high-confidence inaccuracies known as hallucinations. Addressing this challenge, our research introduces InternalInspector, a novel framework designed to enhance confidence estimation in LLMs by leveraging contrastive learning on internal states including attention states, feed-forward states, and activation states of all layers. Unlike existing methods that primarily focus on the final activation state, InternalInspector conducts a comprehensive analysis across all internal states of every layer to accurately identify both correct and incorrect prediction processes. By benchmarking InternalInspector against existing confidence estimation methods across various natural language understanding and generation tasks, including factual question answering, commonsense reasoning, and reading comprehension, InternalInspector achieves significantly higher accuracy in aligning the estimated confidence scores with the correctness of the LLM’s predictions and lower calibration error. Furthermore, InternalInspector excels at HaluEval, a hallucination detection benchmark, outperforming other internal-based confidence estimation methods in this task.
Search
Fix data
Co-authors
- Jianfeng He 2
- Ming Jin 2
- Chang-Tien Lu 2
- Mohammad Beigi 1
- Feng Chen 1
- show all...