Runzhe Cao
2020
The NiuTrans Machine Translation Systems for WMT20
Yuhao Zhang
|
Ziyang Wang
|
Runzhe Cao
|
Binghao Wei
|
Weiqiao Shan
|
Shuhan Zhou
|
Abudurexiti Reheman
|
Tao Zhou
|
Xin Zeng
|
Laohu Wang
|
Yongyu Mu
|
Jingnan Zhang
|
Xiaoqian Liu
|
Xuanjun Zhou
|
Yinqiao Li
|
Bei Li
|
Tong Xiao
|
Jingbo Zhu
Proceedings of the Fifth Conference on Machine Translation
This paper describes NiuTrans neural machine translation systems of the WMT20 news translation tasks. We participated in Japanese<->English, English->Chinese, Inuktitut->English and Tamil->English total five tasks and rank first in Japanese<->English both sides. We mainly utilized iterative back-translation, different depth and widen model architectures, iterative knowledge distillation and iterative fine-tuning. And we find that adequately widened and deepened the model simultaneously, the performance will significantly improve. Also, iterative fine-tuning strategy we implemented is effective during adapting domain. For Inuktitut->English and Tamil->English tasks, we built multilingual models separately and employed pretraining word embedding to obtain better performance.
Search
Fix data
Co-authors
- Yinqiao Li 1
- Bei Li 1
- Xiaoqian Liu 1
- Yongyu Mu 1
- Abudurexiti Reheman 1
- show all...
Venues
- wmt1