Ruochen Xu


pdf bib
Leveraging Knowledge in Multilingual Commonsense Reasoning
Yuwei Fang | Shuohang Wang | Yichong Xu | Ruochen Xu | Siqi Sun | Chenguang Zhu | Michael Zeng
Findings of the Association for Computational Linguistics: ACL 2022

Commonsense reasoning (CSR) requires models to be equipped with general world knowledge. While CSR is a language-agnostic process, most comprehensive knowledge sources are restricted to a small number of languages, especially English. Thus, it remains unclear how to effectively conduct multilingual commonsense reasoning (XCSR) for various languages. In this work, we propose to use English as a pivot language, utilizing English knowledge sources for our our commonsense reasoning framework via a translate-retrieve-translate (TRT) strategy. For multilingual commonsense questions and answer candidates, we collect related knowledge via translation and retrieval from the knowledge in the source language. The retrieved knowledge is then translated into the target language and integrated into a pre-trained multilingual language model via visible knowledge attention. Then we utilize a diverse of four English knowledge sources to provide more comprehensive coverage of knowledge in different formats. Extensive results on the XCSR benchmark demonstrate that TRT with external knowledge can significantly improve multilingual commonsense reasoning in both zero-shot and translate-train settings, consistently outperforming the state-of-the-art by more than 3% on the multilingual commonsense reasoning benchmark X-CSQA and X-CODAH.

pdf bib
Training Data is More Valuable than You Think: A Simple and Effective Method by Retrieving from Training Data
Shuohang Wang | Yichong Xu | Yuwei Fang | Yang Liu | Siqi Sun | Ruochen Xu | Chenguang Zhu | Michael Zeng
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Retrieval-based methods have been shown to be effective in NLP tasks via introducing external knowledge. However, the indexing and retrieving of large-scale corpora bring considerable computational cost. Surprisingly, we found that REtrieving from the traINing datA (REINA) only can lead to significant gains on multiple NLG and NLU tasks. We retrieve the labeled training instances most similar to the input text and then concatenate them with the input to feed into the model to generate the output. Experimental results show that this simple method can achieve significantly better performance on a variety of NLU and NLG tasks, including summarization, machine translation, language modeling, and question answering tasks. For instance, our proposed method achieved state-of-the-art results on XSum, BigPatent, and CommonsenseQA. Our code is released, .


pdf bib
Fusing Context Into Knowledge Graph for Commonsense Question Answering
Yichong Xu | Chenguang Zhu | Ruochen Xu | Yang Liu | Michael Zeng | Xuedong Huang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Enhancing Factual Consistency of Abstractive Summarization
Chenguang Zhu | William Hinthorn | Ruochen Xu | Qingkai Zeng | Michael Zeng | Xuedong Huang | Meng Jiang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Automatic abstractive summaries are found to often distort or fabricate facts in the article. This inconsistency between summary and original text has seriously impacted its applicability. We propose a fact-aware summarization model FASum to extract and integrate factual relations into the summary generation process via graph attention. We then design a factual corrector model FC to automatically correct factual errors from summaries generated by existing systems. Empirical results show that the fact-aware summarization can produce abstractive summaries with higher factual consistency compared with existing systems, and the correction model improves the factual consistency of given summaries via modifying only a few keywords.


pdf bib
Predicting Performance for Natural Language Processing Tasks
Mengzhou Xia | Antonios Anastasopoulos | Ruochen Xu | Yiming Yang | Graham Neubig
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Given the complexity of combinations of tasks, languages, and domains in natural language processing (NLP) research, it is computationally prohibitive to exhaustively test newly proposed models on each possible experimental setting. In this work, we attempt to explore the possibility of gaining plausible judgments of how well an NLP model can perform under an experimental setting, without actually training or testing the model. To do so, we build regression models to predict the evaluation score of an NLP experiment given the experimental settings as input. Experimenting on~9 different NLP tasks, we find that our predictors can produce meaningful predictions over unseen languages and different modeling architectures, outperforming reasonable baselines as well as human experts. %we represent experimental settings using an array of features. Going further, we outline how our predictor can be used to find a small subset of representative experiments that should be run in order to obtain plausible predictions for all other experimental settings.

pdf bib
A Hierarchical Network for Abstractive Meeting Summarization with Cross-Domain Pretraining
Chenguang Zhu | Ruochen Xu | Michael Zeng | Xuedong Huang
Findings of the Association for Computational Linguistics: EMNLP 2020

With the abundance of automatic meeting transcripts, meeting summarization is of great interest to both participants and other parties. Traditional methods of summarizing meetings depend on complex multi-step pipelines that make joint optimization intractable. Meanwhile, there are a handful of deep neural models for text summarization and dialogue systems. However, the semantic structure and styles of meeting transcripts are quite different from articles and conversations. In this paper, we propose a novel abstractive summary network that adapts to the meeting scenario. We design a hierarchical structure to accommodate long meeting transcripts and a role vector to depict the difference among speakers. Furthermore, due to the inadequacy of meeting summary data, we pretrain the model on large-scale news summary data. Empirical results show that our model outperforms previous approaches in both automatic metrics and human evaluation. For example, on ICSI dataset, the ROUGE-1 score increases from 34.66% to 46.28%.

pdf bib
Mixed-Lingual Pre-training for Cross-lingual Summarization
Ruochen Xu | Chenguang Zhu | Yu Shi | Michael Zeng | Xuedong Huang
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Cross-lingual Summarization (CLS) aims at producing a summary in the target language for an article in the source language. Traditional solutions employ a two-step approach, i.e. translate -> summarize or summarize -> translate. Recently, end-to-end models have achieved better results, but these approaches are mostly limited by their dependence on large-scale labeled data. We propose a solution based on mixed-lingual pre-training that leverages both cross-lingual tasks such as translation and monolingual tasks like masked language models. Thus, our model can leverage the massive monolingual data to enhance its modeling of language. Moreover, the architecture has no task-specific components, which saves memory and increases optimization efficiency. We show in experiments that this pre-training scheme can effectively boost the performance of cross-lingual summarization. In NCLS dataset, our model achieves an improvement of 2.82 (English to Chinese) and 1.15 (Chinese to English) ROUGE-1 scores over state-of-the-art results.


pdf bib
Unsupervised Cross-lingual Transfer of Word Embedding Spaces
Ruochen Xu | Yiming Yang | Naoki Otani | Yuexin Wu
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Cross-lingual transfer of word embeddings aims to establish the semantic mappings among words in different languages by learning the transformation functions over the corresponding word embedding spaces. Successfully solving this problem would benefit many downstream tasks such as to translate text classification models from resource-rich languages (e.g. English) to low-resource languages. Supervised methods for this problem rely on the availability of cross-lingual supervision, either using parallel corpora or bilingual lexicons as the labeled data for training, which may not be available for many low resource languages. This paper proposes an unsupervised learning approach that does not require any cross-lingual labeled data. Given two monolingual word embedding spaces for any language pair, our algorithm optimizes the transformation functions in both directions simultaneously based on distributional matching as well as minimizing the back-translation losses. We use a neural network implementation to calculate the Sinkhorn distance, a well-defined distributional similarity measure, and optimize our objective through back-propagation. Our evaluation on benchmark datasets for bilingual lexicon induction and cross-lingual word similarity prediction shows stronger or competitive performance of the proposed method compared to other state-of-the-art supervised and unsupervised baseline methods over many language pairs.

pdf bib
Low-resource Cross-lingual Event Type Detection via Distant Supervision with Minimal Effort
Aldrian Obaja Muis | Naoki Otani | Nidhi Vyas | Ruochen Xu | Yiming Yang | Teruko Mitamura | Eduard Hovy
Proceedings of the 27th International Conference on Computational Linguistics

The use of machine learning for NLP generally requires resources for training. Tasks performed in a low-resource language usually rely on labeled data in another, typically resource-rich, language. However, there might not be enough labeled data even in a resource-rich language such as English. In such cases, one approach is to use a hand-crafted approach that utilizes only a small bilingual dictionary with minimal manual verification to create distantly supervised data. Another is to explore typical machine learning techniques, for example adversarial training of bilingual word representations. We find that in event-type detection task—the task to classify [parts of] documents into a fixed set of labels—they give about the same performance. We explore ways in which the two methods can be complementary and also see how to best utilize a limited budget for manual annotation to maximize performance gain.


pdf bib
Cross-lingual Distillation for Text Classification
Ruochen Xu | Yiming Yang
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Cross-lingual text classification(CLTC) is the task of classifying documents written in different languages into the same taxonomy of categories. This paper presents a novel approach to CLTC that builds on model distillation, which adapts and extends a framework originally proposed for model compression. Using soft probabilistic predictions for the documents in a label-rich language as the (induced) supervisory labels in a parallel corpus of documents, we train classifiers successfully for new languages in which labeled training data are not available. An adversarial feature adaptation technique is also applied during the model training to reduce distribution mismatch. We conducted experiments on two benchmark CLTC datasets, treating English as the source language and German, French, Japan and Chinese as the unlabeled target languages. The proposed approach had the advantageous or comparable performance of the other state-of-art methods.


pdf bib
Leveraging Multilingual Training for Limited Resource Event Extraction
Andrew Hsi | Yiming Yang | Jaime Carbonell | Ruochen Xu
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Event extraction has become one of the most important topics in information extraction, but to date, there is very limited work on leveraging cross-lingual training to boost performance. We propose a new event extraction approach that trains on multiple languages using a combination of both language-dependent and language-independent features, with particular focus on the case where target domain training data is of very limited size. We show empirically that multilingual training can boost performance for the tasks of event trigger extraction and event argument extraction on the Chinese ACE 2005 dataset.