2024
pdf
bib
abs
SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages
Holy Lovenia
|
Rahmad Mahendra
|
Salsabil Maulana Akbar
|
Lester James Validad Miranda
|
Jennifer Santoso
|
Elyanah Aco
|
Akhdan Fadhilah
|
Jonibek Mansurov
|
Joseph Marvin Imperial
|
Onno P. Kampman
|
Joel Ruben Antony Moniz
|
Muhammad Ravi Shulthan Habibi
|
Frederikus Hudi
|
Jann Railey Montalan
|
Ryan Ignatius Hadiwijaya
|
Joanito Agili Lopo
|
William Nixon
|
Börje F. Karlsson
|
James Jaya
|
Ryandito Diandaru
|
Yuze Gao
|
Patrick Amadeus Irawan
|
Bin Wang
|
Jan Christian Blaise Cruz
|
Chenxi Whitehouse
|
Ivan Halim Parmonangan
|
Maria Khelli
|
Wenyu Zhang
|
Lucky Susanto
|
Reynard Adha Ryanda
|
Sonny Lazuardi Hermawan
|
Dan John Velasco
|
Muhammad Dehan Al Kautsar
|
Willy Fitra Hendria
|
Yasmin Moslem
|
Noah Flynn
|
Muhammad Farid Adilazuarda
|
Haochen Li
|
Johanes Lee
|
R. Damanhuri
|
Shuo Sun
|
Muhammad Reza Qorib
|
Amirbek Djanibekov
|
Wei Qi Leong
|
Quyet V. Do
|
Niklas Muennighoff
|
Tanrada Pansuwan
|
Ilham Firdausi Putra
|
Yan Xu
|
Tai Ngee Chia
|
Ayu Purwarianti
|
Sebastian Ruder
|
William Chandra Tjhi
|
Peerat Limkonchotiwat
|
Alham Fikri Aji
|
Sedrick Keh
|
Genta Indra Winata
|
Ruochen Zhang
|
Fajri Koto
|
Zheng Xin Yong
|
Samuel Cahyawijaya
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Southeast Asia (SEA) is a region rich in linguistic diversity and cultural variety, with over 1,300 indigenous languages and a population of 671 million people. However, prevailing AI models suffer from a significant lack of representation of texts, images, and audio datasets from SEA, compromising the quality of AI models for SEA languages. Evaluating models for SEA languages is challenging due to the scarcity of high-quality datasets, compounded by the dominance of English training data, raising concerns about potential cultural misrepresentation. To address these challenges, through a collaborative movement, we introduce SEACrowd, a comprehensive resource center that fills the resource gap by providing standardized corpora in nearly 1,000 SEA languages across three modalities. Through our SEACrowd benchmarks, we assess the quality of AI models on 36 indigenous languages across 13 tasks, offering valuable insights into the current AI landscape in SEA. Furthermore, we propose strategies to facilitate greater AI advancements, maximizing potential utility and resource equity for the future of AI in Southeast Asia.
pdf
bib
abs
Re-Evaluating Evaluation for Multilingual Summarization
Jessica Zosa Forde
|
Ruochen Zhang
|
Lintang Sutawika
|
Alham Fikri Aji
|
Samuel Cahyawijaya
|
Genta Indra Winata
|
Minghao Wu
|
Carsten Eickhoff
|
Stella Biderman
|
Ellie Pavlick
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Automatic evaluation approaches (ROUGE, BERTScore, LLM-based evaluators) have been widely used to evaluate summarization tasks. Despite the complexities of script differences and tokenization, these approaches have been indiscriminately applied to summarization across multiple languages. While previous works have argued that these approaches correlate strongly with human ratings in English, it remains unclear whether the conclusion holds for other languages. To answer this question, we construct a small-scale pilot dataset containing article-summary pairs and human ratings in English, Chinese and Indonesian. To measure the strength of summaries, our ratings are measured as head-to-head comparisons with resulting Elo scores across four dimensions. Our analysis reveals that standard metrics are unreliable measures of quality, and that these problems are exacerbated in Chinese and Indonesian. We advocate for more nuanced and careful considerations in designing a robust evaluation framework for multiple languages.
pdf
bib
abs
MINERS: Multilingual Language Models as Semantic Retrievers
Genta Indra Winata
|
Ruochen Zhang
|
David Ifeoluwa Adelani
Findings of the Association for Computational Linguistics: EMNLP 2024
Words have been represented in a high-dimensional vector space that encodes their semantic similarities, enabling downstream applications such as retrieving synonyms, antonyms, and relevant contexts. However, despite recent advances in multilingual language models (LMs), the effectiveness of these models’ representations in semantic retrieval contexts has not been comprehensively explored. To fill this gap, this paper introduces the MINERS, a benchmark designed to evaluate the ability of multilingual LMs in semantic retrieval tasks, including bitext mining and classification via retrieval-augmented contexts. We create a comprehensive framework to assess the robustness of LMs in retrieving samples across over 200 diverse languages, including extremely low-resource languages in challenging cross-lingual and code-switching settings. Our results demonstrate that by solely retrieving semantically similar embeddings yields performance competitive with state-of-the-art approaches, without requiring any fine-tuning.
pdf
bib
abs
CroCoSum: A Benchmark Dataset for Cross-Lingual Code-Switched Summarization
Ruochen Zhang
|
Carsten Eickhoff
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Cross-lingual summarization (CLS) has attracted increasing interest in recent years due to the availability of large-scale web-mined datasets and the advancements of multilingual language models. However, given the rareness of naturally occurring CLS resources, the majority of datasets are forced to rely on translation which can contain overly literal artifacts. This restricts our ability to observe naturally occurring CLS pairs that capture organic diction, including instances of code-switching. This alteration between languages in mid-message is a common phenomenon in multilingual settings yet has been largely overlooked in cross-lingual contexts due to data scarcity. To address this gap, we introduce CroCoSum, a dataset of cross-lingual code-switched summarization of technology news. It consists of over 24,000 English source articles and 18,000 human-written Chinese news summaries, with more than 92% of the summaries containing code-switched phrases. For reference, we evaluate the performance of existing approaches including pipeline, end-to-end, and zero-shot methods. We show that leveraging existing CLS resources as a pretraining step does not improve performance on CroCoSum, indicating the limited generalizability of current datasets. Finally, we discuss the challenges of evaluating cross-lingual summarizers on code-switched generation through qualitative error analyses.
2023
pdf
bib
abs
Prompting Multilingual Large Language Models to Generate Code-Mixed Texts: The Case of South East Asian Languages
Zheng Xin Yong
|
Ruochen Zhang
|
Jessica Forde
|
Skyler Wang
|
Arjun Subramonian
|
Holy Lovenia
|
Samuel Cahyawijaya
|
Genta Winata
|
Lintang Sutawika
|
Jan Christian Blaise Cruz
|
Yin Lin Tan
|
Long Phan
|
Long Phan
|
Rowena Garcia
|
Thamar Solorio
|
Alham Fikri Aji
Proceedings of the 6th Workshop on Computational Approaches to Linguistic Code-Switching
While code-mixing is a common linguistic practice in many parts of the world, collecting high-quality and low-cost code-mixed data remains a challenge for natural language processing (NLP) research. The recent proliferation of Large Language Models (LLMs) compels one to ask: how capable are these systems in generating code-mixed data? In this paper, we explore prompting multilingual LLMs in a zero-shot manner to generate code-mixed data for seven languages in South East Asia (SEA), namely Indonesian, Malay, Chinese, Tagalog, Vietnamese, Tamil, and Singlish. We find that publicly available multilingual instruction-tuned models such as BLOOMZ and Flan-T5-XXL are incapable of producing texts with phrases or clauses from different languages. ChatGPT exhibits inconsistent capabilities in generating code-mixed texts, wherein its per-formance varies depending on the prompt template and language pairing. For instance, ChatGPT generates fluent and natural Singlish texts (an English-based creole spoken in Singapore), but for English-Tamil language pair, the system mostly produces grammatically incorrect or semantically meaningless utterances. Furthermore, it may erroneously introduce languages not specified in the prompt. Based on our investigation, existing multilingual LLMs exhibit a wide range of proficiency in code-mixed data generation for SEA languages. As such, we advise against using LLMs in this context without extensive human checks.
pdf
bib
abs
Multilingual Large Language Models Are Not (Yet) Code-Switchers
Ruochen Zhang
|
Samuel Cahyawijaya
|
Jan Christian Blaise Cruz
|
Genta Winata
|
Alham Fikri Aji
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Multilingual Large Language Models (LLMs) have recently shown great capabilities in a wide range of tasks, exhibiting state-of-the-art performance through zero-shot or few-shot prompting methods. While there have been extensive studies on their abilities in monolingual tasks, the investigation of their potential in the context of code-switching (CSW), the practice of alternating languages within an utterance, remains relatively uncharted. In this paper, we provide a comprehensive empirical analysis of various multilingual LLMs, benchmarking their performance across four tasks: sentiment analysis, machine translation, summarization and word-level language identification. Our results indicate that despite multilingual LLMs exhibiting promising outcomes in certain tasks using zero or few-shot prompting, they still underperform in comparison to fine-tuned models of much smaller scales. We argue that current “multilingualism’ in LLMs does not inherently imply proficiency with code-switching texts, calling for future research to bridge this discrepancy.
pdf
bib
Current Status of NLP in South East Asia with Insights from Multilingualism and Language Diversity
Alham Fikri Aji
|
Jessica Zosa Forde
|
Alyssa Marie Loo
|
Lintang Sutawika
|
Skyler Wang
|
Genta Indra Winata
|
Zheng-Xin Yong
|
Ruochen Zhang
|
A. Seza Doğruöz
|
Yin Lin Tan
|
Jan Christian Blaise Cruz
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics: Tutorial Abstract
2021
pdf
bib
abs
SOCCER: An Information-Sparse Discourse State Tracking Collection in the Sports Commentary Domain
Ruochen Zhang
|
Carsten Eickhoff
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
In the pursuit of natural language understanding, there has been a long standing interest in tracking state changes throughout narratives. Impressive progress has been made in modeling the state of transaction-centric dialogues and procedural texts. However, this problem has been less intensively studied in the realm of general discourse where ground truth descriptions of states may be loosely defined and state changes are less densely distributed over utterances. This paper proposes to turn to simplified, fully observable systems that show some of these properties: Sports events. We curated 2,263 soccer matches including time-stamped natural language commentary accompanied by discrete events such as a team scoring goals, switching players or being penalized with cards. We propose a new task formulation where, given paragraphs of commentary of a game at different timestamps, the system is asked to recognize the occurrence of in-game events. This domain allows for rich descriptions of state while avoiding the complexities of many other real-world settings. As an initial point of performance measurement, we include two baseline methods from the perspectives of sentence classification with temporal dependence and current state-of-the-art generative model, respectively, and demonstrate that even sophisticated existing methods struggle on the state tracking task when the definition of state broadens or non-event chatter becomes prevalent.