Ruotong Liao


2024

pdf bib
GenTKG: Generative Forecasting on Temporal Knowledge Graph with Large Language Models
Ruotong Liao | Xu Jia | Yangzhe Li | Yunpu Ma | Volker Tresp
Findings of the Association for Computational Linguistics: NAACL 2024

The rapid advancements in large language models (LLMs) have ignited interest in the temporal knowledge graph (tKG) domain, where conventional embedding-based and rule-based methods dominate. The question remains open of whether pre-trained LLMs can understand structured temporal relational data and replace them as the foundation model for temporal relational forecasting. Therefore, we bring temporal knowledge forecasting into the generative setting. However, challenges occur in the huge chasms between complex temporal graph data structure and sequential natural expressions LLMs can handle, and between the enormous data sizes of tKGs and heavy computation costs of finetuning LLMs. To address these challenges, we propose a novel retrieval-augmented generation framework named GenTKG combining a temporal logical rule-based retrieval strategy and few-shot parameter-efficient instruction tuning to solve the above challenges, respectively. Extensive experiments have shown that GenTKG outperforms conventional methods of temporal relational forecasting with low computation resources using extremely limited training data as few as 16 samples. GenTKG also highlights remarkable cross-domain generalizability with outperforming performance on unseen datasets without re-training, and in-domain generalizability regardless of time split in the same dataset. Our work reveals the huge potential of LLMs in the tKG domain and opens a new frontier for generative forecasting on tKGs. The code and data are released here: https://github.com/mayhugotong/GenTKG.

pdf bib
zrLLM: Zero-Shot Relational Learning on Temporal Knowledge Graphs with Large Language Models
Zifeng Ding | Heling Cai | Jingpei Wu | Yunpu Ma | Ruotong Liao | Bo Xiong | Volker Tresp
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Modeling evolving knowledge over temporal knowledge graphs (TKGs) has become a heated topic. Various methods have been proposed to forecast links on TKGs. Most of them are embedding-based, where hidden representations are learned to represent knowledge graph (KG) entities and relations based on the observed graph contexts. Although these methods show strong performance on traditional TKG forecasting (TKGF) benchmarks, they face a strong challenge in modeling the unseen zero-shot relations that have no prior graph context. In this paper, we try to mitigate this problem as follows. We first input the text descriptions of KG relations into large language models (LLMs) for generating relation representations, and then introduce them into embedding-based TKGF methods. LLM-empowered representations can capture the semantic information in the relation descriptions. This makes the relations, whether seen or unseen, with similar semantic meanings stay close in the embedding space, enabling TKGF models to recognize zero-shot relations even without any observed graph context. Experimental results show that our approach helps TKGF models to achieve much better performance in forecasting the facts with previously unseen relations, while still maintaining their ability in link forecasting regarding seen relations.

2023

pdf bib
ECOLA: Enhancing Temporal Knowledge Embeddings with Contextualized Language Representations
Zhen Han | Ruotong Liao | Jindong Gu | Yao Zhang | Zifeng Ding | Yujia Gu | Heinz Koeppl | Hinrich Schütze | Volker Tresp
Findings of the Association for Computational Linguistics: ACL 2023

Since conventional knowledge embedding models cannot take full advantage of the abundant textual information, there have been extensive research efforts in enhancing knowledge embedding using texts. However, existing enhancement approaches cannot apply to temporal knowledge graphs (tKGs), which contain time-dependent event knowledge with complex temporal dynamics. Specifically, existing enhancement approaches often assume knowledge embedding is time-independent. In contrast, the entity embedding in tKG models usually evolves, which poses the challenge of aligning temporally relevant texts with entities. To this end, we propose to study enhancing temporal knowledge embedding with textual data in this paper. As an approach to this task, we propose Enhanced Temporal Knowledge Embeddings with Contextualized Language Representations (ECOLA), which takes the temporal aspect into account and injects textual information into temporal knowledge embedding. To evaluate ECOLA, we introduce three new datasets for training and evaluating ECOLA. Extensive experiments show that ECOLA significantly enhances temporal KG embedding models with up to 287% relative improvements regarding Hits@1 on the link prediction task. The code and models are publicly available on https://github.com/mayhugotong/ECOLA.