Ruri Liu


pdf bib
CETA: A Consensus Enhanced Training Approach for Denoising in Distantly Supervised Relation Extraction
Ruri Liu | Shasha Mo | Jianwei Niu | Shengda Fan
Proceedings of the 29th International Conference on Computational Linguistics

Distantly supervised relation extraction aims to extract relational facts from texts but suffers from noisy instances. Existing methods usually select reliable sentences that rely on potential noisy labels, resulting in wrongly selecting many noisy training instances or underutilizing a large amount of valuable training data. This paper proposes a sentence-level DSRE method beyond typical instance selection approaches by preventing samples from falling into the wrong classification space on the feature space. Specifically, a theorem for denoising and the corresponding implementation, named Consensus Enhanced Training Approach (CETA), are proposed in this paper. By training the model with CETA, samples of different classes are separated, and samples of the same class are closely clustered in the feature space. Thus the model can easily establish the robust classification boundary to prevent noisy labels from biasing wrongly labeled samples into the wrong classification space. This process is achieved by enhancing the classification consensus between two discrepant classifiers and does not depend on any potential noisy labels, thus avoiding the above two limitations. Extensive experiments on widely-used benchmarks have demonstrated that CETA significantly outperforms the previous methods and achieves new state-of-the-art results.