Ryan Koo
2024
Dynamic Multi-Reward Weighting for Multi-Style Controllable Generation
Karin De Langis
|
Ryan Koo
|
Dongyeop Kang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Textual style expresses a diverse set of information, including interpersonal dynamics (e.g., formality) and the author’s emotions or attitudes (e.g., disgust). An open question is how language models can be explicitly controlled so that they weave together target styles when generating text: for example, to produce text that is both negative and non-toxic. One approach to such controlled generation is multi-objective reinforcement learning (RL), but how to best combine multiple objectives in a reward function is an open question. In this paper, we investigate various formulations of multi-style reward formulations, including calibrated outputs from discriminators and dynamic weighting by discriminator gradient magnitudes. We find that our proposed dynamic weighting outperforms static weighting approaches with respect style control while maintaining linguistic quality, and we explore its effectiveness in 2- and 3-style control.
Benchmarking Cognitive Biases in Large Language Models as Evaluators
Ryan Koo
|
Minhwa Lee
|
Vipul Raheja
|
Jong Inn Park
|
Zae Myung Kim
|
Dongyeop Kang
Findings of the Association for Computational Linguistics: ACL 2024
Large Language Models (LLMs) have recently been shown to be effective as automatic evaluators with simple prompting and in-context learning. In this work, we assemble 16 LLMs encompassing four different size ranges and evaluate their output responses by preference ranking from the other LLMs as evaluators, such as System Star is better than System Square. We then evaluate the quality of ranking outputs introducing the Cognitive Bias Benchmark for LLMs as Evaluators (CoBBLer), a benchmark to measure six different cognitive biases in LLM evaluation outputs, such as the Egocentric bias where a model prefers to rank its own outputs highly in evaluation. We find that LLMs are biased text quality evaluators, exhibiting strong indications on our bias benchmark (40% of comparisons made by all models) within each of their evaluations that question their robustness as evaluators. Furthermore, we examine the correlation between human and machine preferences and calculate the average Rank-Biased Overlap (RBO) score to be 44%, indicating that machine preferences are misaligned with humans. According to our findings, LLMs may still be unable to be utilized for automatic annotation aligned with human preferences.
2023
CoEdIT: Text Editing by Task-Specific Instruction Tuning
Vipul Raheja
|
Dhruv Kumar
|
Ryan Koo
|
Dongyeop Kang
Findings of the Association for Computational Linguistics: EMNLP 2023
We introduce CoEdIT, a state-of-the-art text editing system for writing assistance. CoEdIT takes instructions from the user specifying the attributes of the desired text, such as “Make the sentence simpler” or “Write it in a more neutral style,” and outputs the edited text. We present a large language model fine-tuned on a diverse collection of task-specific instructions for text editing (a total of 82K instructions). Our model (1) achieves state-of-the-art performance on various text editing benchmarks, (2) is competitive with publicly available largest-sized LLMs trained on instructions while being ~60x smaller, (3) is capable of generalizing to unseen edit instructions, and (4) exhibits abilities to generalize to composite instructions containing different combinations of edit actions. Through extensive qualitative and quantitative analysis, we show that writers prefer the edits suggested by CoEdIT relative to other state-of-the-art text editing models. Our code, data, and models are publicly available at https://github.com/vipulraheja/coedit.
Search
Fix data
Co-authors
- Dongyeop Kang 3
- Vipul Raheja 2
- Karin De Langis 1
- Zae Myung Kim 1
- Dhruv Kumar 1
- show all...