Ryandito Diandaru


2024

pdf bib
SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages
Holy Lovenia | Rahmad Mahendra | Salsabil Maulana Akbar | Lester James Validad Miranda | Jennifer Santoso | Elyanah Aco | Akhdan Fadhilah | Jonibek Mansurov | Joseph Marvin Imperial | Onno P. Kampman | Joel Ruben Antony Moniz | Muhammad Ravi Shulthan Habibi | Frederikus Hudi | Jann Railey Montalan | Ryan Ignatius Hadiwijaya | Joanito Agili Lopo | William Nixon | Börje F. Karlsson | James Jaya | Ryandito Diandaru | Yuze Gao | Patrick Amadeus Irawan | Bin Wang | Jan Christian Blaise Cruz | Chenxi Whitehouse | Ivan Halim Parmonangan | Maria Khelli | Wenyu Zhang | Lucky Susanto | Reynard Adha Ryanda | Sonny Lazuardi Hermawan | Dan John Velasco | Muhammad Dehan Al Kautsar | Willy Fitra Hendria | Yasmin Moslem | Noah Flynn | Muhammad Farid Adilazuarda | Haochen Li | Johanes Lee | R. Damanhuri | Shuo Sun | Muhammad Reza Qorib | Amirbek Djanibekov | Wei Qi Leong | Quyet V. Do | Niklas Muennighoff | Tanrada Pansuwan | Ilham Firdausi Putra | Yan Xu | Tai Ngee Chia | Ayu Purwarianti | Sebastian Ruder | William Chandra Tjhi | Peerat Limkonchotiwat | Alham Fikri Aji | Sedrick Keh | Genta Indra Winata | Ruochen Zhang | Fajri Koto | Zheng Xin Yong | Samuel Cahyawijaya
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Southeast Asia (SEA) is a region rich in linguistic diversity and cultural variety, with over 1,300 indigenous languages and a population of 671 million people. However, prevailing AI models suffer from a significant lack of representation of texts, images, and audio datasets from SEA, compromising the quality of AI models for SEA languages. Evaluating models for SEA languages is challenging due to the scarcity of high-quality datasets, compounded by the dominance of English training data, raising concerns about potential cultural misrepresentation. To address these challenges, through a collaborative movement, we introduce SEACrowd, a comprehensive resource center that fills the resource gap by providing standardized corpora in nearly 1,000 SEA languages across three modalities. Through our SEACrowd benchmarks, we assess the quality of AI models on 36 indigenous languages across 13 tasks, offering valuable insights into the current AI landscape in SEA. Furthermore, we propose strategies to facilitate greater AI advancements, maximizing potential utility and resource equity for the future of AI in Southeast Asia.

pdf bib
Could We Have Had Better Multilingual LLMs if English Was Not the Central Language?
Ryandito Diandaru | Lucky Susanto | Zilu Tang | Ayu Purwarianti | Derry Tanti Wijaya
Proceedings of the Second International Workshop Towards Digital Language Equality (TDLE): Focusing on Sustainability @ LREC-COLING 2024

Large Language Models (LLMs) demonstrate strong machine translation capabilities on languages they are trained on. However, the impact of factors beyond training data size on translation performance remains a topic of debate, especially concerning languages not directly encountered during training. Our study delves into Llama2’s translation capabilities. By modeling a linear relationship between linguistic feature distances and machine translation scores, we ask ourselves if there are potentially better central languages for LLMs other than English. Our experiments show that the 7B Llama2 model yields above 10 BLEU when translating into all languages it has seen, which rarely happens for languages it has not seen. Most translation improvements into unseen languages come from scaling up the model size rather than instruction tuning or increasing shot count. Furthermore, our correlation analysis reveals that syntactic similarity is not the only linguistic factor that strongly correlates with machine translation scores. Interestingly, we discovered that under specific circumstances, some languages (e.g. Swedish, Catalan), despite having significantly less training data, exhibit comparable correlation levels to English. These insights challenge the prevailing landscape of LLMs, suggesting that models centered around languages other than English could provide a more efficient foundation for multilingual applications.

2023

pdf bib
NusaCrowd: Open Source Initiative for Indonesian NLP Resources
Samuel Cahyawijaya | Holy Lovenia | Alham Fikri Aji | Genta Winata | Bryan Wilie | Fajri Koto | Rahmad Mahendra | Christian Wibisono | Ade Romadhony | Karissa Vincentio | Jennifer Santoso | David Moeljadi | Cahya Wirawan | Frederikus Hudi | Muhammad Satrio Wicaksono | Ivan Parmonangan | Ika Alfina | Ilham Firdausi Putra | Samsul Rahmadani | Yulianti Oenang | Ali Septiandri | James Jaya | Kaustubh Dhole | Arie Suryani | Rifki Afina Putri | Dan Su | Keith Stevens | Made Nindyatama Nityasya | Muhammad Adilazuarda | Ryan Hadiwijaya | Ryandito Diandaru | Tiezheng Yu | Vito Ghifari | Wenliang Dai | Yan Xu | Dyah Damapuspita | Haryo Wibowo | Cuk Tho | Ichwanul Karo Karo | Tirana Fatyanosa | Ziwei Ji | Graham Neubig | Timothy Baldwin | Sebastian Ruder | Pascale Fung | Herry Sujaini | Sakriani Sakti | Ayu Purwarianti
Findings of the Association for Computational Linguistics: ACL 2023

We present NusaCrowd, a collaborative initiative to collect and unify existing resources for Indonesian languages, including opening access to previously non-public resources. Through this initiative, we have brought together 137 datasets and 118 standardized data loaders. The quality of the datasets has been assessed manually and automatically, and their value is demonstrated through multiple experiments.NusaCrowd’s data collection enables the creation of the first zero-shot benchmarks for natural language understanding and generation in Indonesian and the local languages of Indonesia. Furthermore, NusaCrowd brings the creation of the first multilingual automatic speech recognition benchmark in Indonesian and the local languages of Indonesia. Our work strives to advance natural language processing (NLP) research for languages that are under-represented despite being widely spoken.

pdf bib
Replicable Benchmarking of Neural Machine Translation (NMT) on Low-Resource Local Languages in Indonesia
Lucky Susanto | Ryandito Diandaru | Adila Krisnadhi | Ayu Purwarianti | Derry Tanti Wijaya
Proceedings of the First Workshop in South East Asian Language Processing

Search
Co-authors