Ryota Takahashi
2024
Deep Reinforcement Learning with Hierarchical Action Exploration for Dialogue Generation
Itsugun Cho
|
Ryota Takahashi
|
Yusaku Yanase
|
Hiroaki Saito
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Traditionally, approximate dynamic programming is employed in dialogue generation with greedy policy improvement through action sampling, as the natural language action space is vast. However, this practice is inefficient for reinforcement learning (RL) due to the sparsity of eligible responses with high action values, which leads to weak improvement sustained by random sampling. This paper presents theoretical analysis and experiments that reveal the performance of the dialogue policy is positively correlated with the sampling size. To overcome this limitation, we introduce a novel dual-granularity Q-function that explores the most promising response category to intervene in the sampling process. Our approach extracts actions based on a grained hierarchy, thereby achieving the optimum with fewer policy iterations. Additionally, we use offline RL and learn from multiple reward functions designed to capture emotional nuances in human interactions. Empirical studies demonstrate that our algorithm outperforms baselines across automatic metrics and human evaluations. Further testing reveals that our algorithm exhibits both explainability and controllability, as well as generates responses with higher expected rewards.
2022
A Personalized Dialogue Generator with Implicit User Persona Detection
Itsugun Cho
|
Dongyang Wang
|
Ryota Takahashi
|
Hiroaki Saito
Proceedings of the 29th International Conference on Computational Linguistics
Current works in the generation of personalized dialogue primarily contribute to the agent presenting a consistent personality and driving a more informative response. However, we found that the generated responses from most previous models tend to be self-centered, with little care for the user in the dialogue. Moreover, we consider that human-like conversation is essentially built based on inferring information about the persona of the other party. Motivated by this, we propose a novel personalized dialogue generator by detecting an implicit user persona. Because it is hard to collect a large number of detailed personas for each user, we attempted to model the user’s potential persona and its representation from dialogue history, with no external knowledge. The perception and fader variables were conceived using conditional variational inference. The two latent variables simulate the process of people being aware of each other’s persona and producing a corresponding expression in conversation. Finally, posterior-discriminated regularization was presented to enhance the training procedure. Empirical studies demonstrate that, compared to state-of-the-art methods, our approach is more concerned with the user’s persona and achieves a considerable boost across both automatic metrics and human evaluations.