2024
pdf
bib
abs
GAMA: A Large Audio-Language Model with Advanced Audio Understanding and Complex Reasoning Abilities
Sreyan Ghosh
|
Sonal Kumar
|
Ashish Seth
|
Chandra Kiran Reddy Evuru
|
Utkarsh Tyagi
|
S Sakshi
|
Oriol Nieto
|
Ramani Duraiswami
|
Dinesh Manocha
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Perceiving and understanding non-speech sounds and non-verbal speech is essential to making decisions that help us interact with our surroundings. In this paper, we propose GAMA, a novel General-purpose Large Audio-Language Model (LALM) with Advanced Audio Understanding and Complex Reasoning Abilities. We build GAMA by integrating an LLM with multiple types of audio representations, including features from a custom Audio Q-Former, a multi-layer aggregator that aggregates features from multiple layers of an audio encoder. We fine-tune GAMA on a large-scale audio-language dataset, which augments it with audio understanding capabilities. Next, we propose CompA-R (Instruction-Tuning for Complex Audio Reasoning), a synthetically generated instruction-tuning (IT) dataset with instructions that require the model to perform complex reasoning on the input audio. We instruction-tune GAMA with CompA-R to endow it with complex reasoning abilities, where we further add a soft prompt as input with high-level semantic evidence by leveraging event tags of the input audio. Finally, we also propose CompA-R-test, a human-labeled evaluation dataset for evaluating the capabilities of LALMs on open-ended audio question-answering that requires complex reasoning. Through automated and expert human evaluations, we show that GAMA outperforms all other LALMs in literature on diverse audio understanding tasks by margins of 1%-84% and demonstrates state-of-the-art performance on deductive reasoning and hallucination evaluation benchmarks. Further, GAMA IT-ed on CompA-R proves to be superior in its complex reasoning capabilities.
pdf
bib
abs
EH-MAM: Easy-to-Hard Masked Acoustic Modeling for Self-Supervised Speech Representation Learning
Ashish Seth
|
Ramaneswaran Selvakumar
|
S Sakshi
|
Sonal Kumar
|
Sreyan Ghosh
|
Dinesh Manocha
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
In this paper, we present EH-MAM (Easy-to-Hard adaptive Masked Acoustic Modeling), a novel self-supervised learning approach for speech representation learning. In contrast to the prior methods that use random masking schemes for Masked Acoustic Modeling (MAM), we introduce a novel selective and adaptive masking strategy. Specifically, during SSL training, we progressively introduce harder regions to the model for reconstruction. Our approach automatically selects hard regions and is built on the observation that the reconstruction loss of individual frames in MAM can provide natural signals to judge the difficulty of solving the MAM pre-text task for that frame. To identify these hard regions, we employ a teacher model that first predicts the frame-wise losses and then decides which frames to mask. By learning to create challenging problems, such as identifying harder frames and solving them simultaneously, the model is able to learn more effective representations and thereby acquire a more comprehensive understanding of the speech. Quantitatively, EH-MAM outperforms several state-of-the-art baselines across various low-resource speech recognition and SUPERB benchmarks by 5%-10%. Additionally, we conduct a thorough analysis to show that the regions masked by EH-MAM effectively capture useful context across speech frames.
pdf
bib
abs
ASPIRE: Language-Guided Data Augmentation for Improving Robustness Against Spurious Correlations
Sreyan Ghosh
|
Chandra Kiran Evuru
|
Sonal Kumar
|
Utkarsh Tyagi
|
S Sakshi
|
Sanjoy Chowdhury
|
Dinesh Manocha
Findings of the Association for Computational Linguistics: ACL 2024
Neural image classifiers can often learn to make predictions by overly relying on non-predictive features that are spuriously correlated with the class labels in the training data. This leads to poor performance in real-world atypical scenarios where such features are absent. This paper presents ASPIRE (Language-guided Data Augmentation for SPurIous correlation REmoval), a simple yet effective solution for supplementing the training dataset with images without spurious features, for robust learning against spurious correlations via better generalization. ASPIRE, guided by language at various steps, can generate non-spurious images without requiring any group labeling or existing non-spurious images in the training set. Precisely, we employ LLMs to first extract foreground and background features from textual descriptions of an image, followed by advanced language-guided image editing to discover the features that are spuriously correlated with the class label. Finally, we personalize a text-to-image generation model using the edited images to generate diverse in-domain images without spurious features. ASPIRE is complementary to all prior robust training methods in literature, and we demonstrate its effectiveness across 4 datasets and 9 baselines and show that ASPIRE improves the worst-group classification accuracy of prior methods by 1% - 38%. We also contribute a novel test set for the challenging Hard ImageNet dataset.
pdf
bib
abs
Do Vision-Language Models Understand Compound Nouns?
Sonal Kumar
|
Sreyan Ghosh
|
S Sakshi
|
Utkarsh Tyagi
|
Dinesh Manocha
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)
Open-vocabulary vision-language models (VLMs) like CLIP, trained using contrastive loss, have emerged as a promising new paradigm for text-to-image retrieval. However, do VLMs understand compound nouns (CNs) (e.g., *lab coat*) as well as they understand nouns (e.g., *lab*)? We curate Compun, a novel benchmark with 400 unique and commonly used CNs, to evaluate the effectiveness of VLMs in interpreting CNs. The Compun benchmark challenges a VLM for text-to-image retrieval where, given a text prompt with a CN, the task is to select the correct image that shows the CN among a pair of distractor images that show the constituent nouns that make up the CN. Next, we perform an in-depth analysis to highlight CLIPs’ limited understanding of certain types of CNs. Finally, we present an alternative framework that moves beyond hand-written templates for text prompts widely used by CLIP-like models. We employ a Large Language Model to generate multiple diverse captions that include the CN as an object in the scene described by the caption. Our proposed method improves CN understanding of CLIP by 8.25% on Compun. Code and benchmark are available.
pdf
bib
abs
ABEX: Data Augmentation for Low-Resource NLU via Expanding Abstract Descriptions
Sreyan Ghosh
|
Utkarsh Tyagi
|
Sonal Kumar
|
Chandra Kiran Evuru
|
Ramaneswaran S
|
S Sakshi
|
Dinesh Manocha
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
We present ABEX, a novel and effective generative data augmentation methodology for low-resource Natural Language Understanding (NLU) tasks. ABEX is based on ABstract-and-EXpand, a novel paradigm for generating diverse forms of an input document – we first convert a document into its concise, abstract description and then generate new documents based on expanding the resultant abstraction. To learn the task of expanding abstract descriptions, we first train BART on a large-scale synthetic dataset with abstract-document pairs. Next, to generate abstract descriptions for a document, we propose a simple, controllable, and training-free method based on editing AMR graphs. ABEX brings the best of both worlds: by expanding from abstract representations, it preserves the original semantic properties of the documents, like style and meaning, thereby maintaining alignment with the original label and data distribution. At the same time, the fundamental process of elaborating on abstract descriptions facilitates diverse generations. We demonstrate the effectiveness of ABEX on 4 NLU tasks spanning 12 datasets and 4 low-resource settings. ABEX outperforms all our baselines qualitatively with improvements of 0.04% - 38.8%. Qualitatively, ABEX outperforms all prior methods from literature in terms of context and length diversity.
2023
pdf
bib
abs
DALE: Generative Data Augmentation for Low-Resource Legal NLP
Sreyan Ghosh
|
Chandra Kiran Reddy Evuru
|
Sonal Kumar
|
S Ramaneswaran
|
S Sakshi
|
Utkarsh Tyagi
|
Dinesh Manocha
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
We present DALE, a novel and effective generative Data Augmentation framework for low-resource LEgal NLP. DALE addresses the challenges existing frameworks pose in generating effective data augmentations of legal documents - legal language, with its specialized vocabulary and complex semantics, morphology, and syntax, does not benefit from data augmentations that merely rephrase the source sentence. To address this, DALE, built on an Encoder-Decoder Language Model, is pre-trained on a novel unsupervised text denoising objective based on selective masking - our masking strategy exploits the domain-specific language characteristics of templatized legal documents to mask collocated spans of text. Denoising these spans help DALE acquire broad legal knowledge and develop the ability to generate coherent and diverse augmentations with novel contexts. Finally, DALE performs conditional generation to generate synthetic augmentations for low-resource Legal NLP tasks. We demonstrate the effectiveness of DALE on 13 datasets spanning 6 tasks and 4 low-resource settings. DALE outperforms all our baselines, including LLMs, qualitatively and quantitatively, with absolute improvements of 1%-50%.