Language typology databases enhance multi-lingual Natural Language Processing (NLP) by improving model adaptability to diverse linguistic structures. The widely-used lang2vec toolkit integrates several such databases, but its coverage remains limited at 28.9%. Previous work on automatically increasing coverage predicts missing values based on features from other languages or focuses on single features, we propose to use textual data for better-informed feature prediction. To this end, we introduce a multi-lingual Part-of-Speech (POS) tagger, achieving over 70% accuracy across 1,749 languages, and experiment with external statistical features and a variety of machine learning algorithms. We also introduce a more realistic evaluation setup, focusing on likely to be missing typology features, and show that our approach outperforms previous work in both setups.
In this study, we present a novel approach to annotating bias and propaganda in social media data by leveraging topic modeling techniques. Utilizing the BERTopic tool, we performed topic modeling on the FIGNEWS Shared-task dataset, which initially comprised 13,500 samples. From this dataset, we identified 35 distinct topics and selected approximately 50 representative samples from each topic, resulting in a subset of 1,812 samples. These selected samples were meticulously annotated for bias and propaganda labels. Subsequently, we employed multiple methods like KNN, SVC, XGBoost, and RAG to develop a classifier capable of detecting bias and propaganda within social media content. Our approach demonstrates the efficacy of using topic modeling for efficient data subset selection and provides a robust foundation for improving the accuracy of bias and propaganda detection in large-scale social media datasets.
Mahsa Amini’s death shocked Iranian society. The effects of this event and the subsequent tragedies in Iran not only in realspace but also in cyberspace, including Twitter, were tremendous and unimaginable. We explore how Twitter has changed after Mahsa Amini’s death by analyzing the sentiments of Iranian users in the 90 days after this event. Additionally, we track the change in word meaning and each word’s neighboring words. Finally, we use word clustering methods for topic modeling.