Sahana Ramnath


pdf bib
Are Machine Rationales (Not) Useful to Humans? Measuring and Improving Human Utility of Free-text Rationales
Brihi Joshi | Ziyi Liu | Sahana Ramnath | Aaron Chan | Zhewei Tong | Shaoliang Nie | Qifan Wang | Yejin Choi | Xiang Ren
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Among the remarkable emergent capabilities of large language models (LMs) is free-text rationalization; beyond certain scale, large LMs are capable of generating seemingly useful rationalizations, which in turn, can dramatically enhance their performances on leaderboards. This phenomenon raises a question: can machine generated rationales also be useful for humans, especially when lay humans try to answer questions based on those machine rationales? We observe that human utility of existing rationales is far from satisfactory and expensive to estimate with human studies. Existing metrics like task performance of the LM generating the rationales or similarity between generated and gold rationales are not good indicators of their human utility. While we observe that certain properties of rationales like conciseness and novelty are correlated with their human utility, estimating them without human involvement is challenging. We show that, by estimating a rationale’s helpfulness in answering similar unseen instances, we can measure its human utility to a better extent. We also translate this finding into an automated score, Gen-U, that we propose, which can help improve LMs’ ability to generate rationales with better human utility, while maintaining most of its task performance. Lastly, we release all code and collected data with this project.

pdf bib
Inference-Time Policy Adapters (IPA): Tailoring Extreme-Scale LMs without Fine-tuning
Ximing Lu | Faeze Brahman | Peter West | Jaehun Jung | Khyathi Chandu | Abhilasha Ravichander | Prithviraj Ammanabrolu | Liwei Jiang | Sahana Ramnath | Nouha Dziri | Jillian Fisher | Bill Lin | Skyler Hallinan | Lianhui Qin | Xiang Ren | Sean Welleck | Yejin Choi
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

While extreme-scale language models have demonstrated exceptional performance on a variety of language tasks, the degree of control over these language models through pure prompting can often be limited. Directly fine-tuning such language models can be effective for tailoring them, but it can be either extremely costly (e.g., GPT-3) or not even feasible for the broader community (e.g., GPT-4). We propose Inference-time Policy Adapters (IPA), which efficiently tailors a language model such as GPT-3 without fine-tuning it. IPA guides a large base model during decoding time through a lightweight policy adapter trained to optimize an arbitrary user objective with reinforcement learning. On five challenging text generation tasks, such as toxicity reduction and lexically constrained generation, IPA consistently brings significant improvements over off-the-shelf language models. It outperforms competitive baseline methods, sometimes even including expensive fine-tuning. In particular, tailoring GPT-2 with IPA can outperform GPT-3, while tailoring GPT-3 with IPA brings a major performance boost over GPT-3 (and sometimes even over GPT-4). Our promising results highlight the potential of IPA as a lightweight alternative to tailoring extreme-scale language models.


pdf bib
HintedBT: Augmenting Back-Translation with Quality and Transliteration Hints
Sahana Ramnath | Melvin Johnson | Abhirut Gupta | Aravindan Raghuveer
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Back-translation (BT) of target monolingual corpora is a widely used data augmentation strategy for neural machine translation (NMT), especially for low-resource language pairs. To improve effectiveness of the available BT data, we introduce HintedBT—a family of techniques which provides hints (through tags) to the encoder and decoder. First, we propose a novel method of using both high and low quality BT data by providing hints (as source tags on the encoder) to the model about the quality of each source-target pair. We don’t filter out low quality data but instead show that these hints enable the model to learn effectively from noisy data. Second, we address the problem of predicting whether a source token needs to be translated or transliterated to the target language, which is common in cross-script translation tasks (i.e., where source and target do not share the written script). For such cases, we propose training the model with additional hints (as target tags on the decoder) that provide information about the operation required on the source (translation or both translation and transliteration). We conduct experiments and detailed analyses on standard WMT benchmarks for three cross-script low/medium-resource language pairs: Hindi,Gujarati,Tamil-to-English. Our methods compare favorably with five strong and well established baselines. We show that using these hints, both separately and together, significantly improves translation quality and leads to state-of-the-art performance in all three language pairs in corresponding bilingual settings.


pdf bib
Towards Interpreting BERT for Reading Comprehension Based QA
Sahana Ramnath | Preksha Nema | Deep Sahni | Mitesh M. Khapra
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

BERT and its variants have achieved state-of-the-art performance in various NLP tasks. Since then, various works have been proposed to analyze the linguistic information being captured in BERT. However, the current works do not provide an insight into how BERT is able to achieve near human-level performance on the task of Reading Comprehension based Question Answering. In this work, we attempt to interpret BERT for RCQA. Since BERT layers do not have predefined roles, we define a layer’s role or functionality using Integrated Gradients. Based on the defined roles, we perform a preliminary analysis across all layers. We observed that the initial layers focus on query-passage interaction, whereas later layers focus more on contextual understanding and enhancing the answer prediction. Specifically for quantifier questions (how much/how many), we notice that BERT focuses on confusing words (i.e., on other numerical quantities in the passage) in the later layers, but still manages to predict the answer correctly. The fine-tuning and analysis scripts will be publicly available at