Sai Prasad


2022

pdf bib
CueBot: Cue-Controlled Response Generation for Assistive Interaction Usages
Shachi H. Kumar | Hsuan Su | Ramesh Manuvinakurike | Max Pinaroc | Sai Prasad | Saurav Sahay | Lama Nachman
Ninth Workshop on Speech and Language Processing for Assistive Technologies (SLPAT-2022)

Conversational assistants are ubiquitous among the general population, however, these systems have not had an impact on people with disabilities, or speech and language disorders, for whom basic day-to-day communication and social interaction is a huge struggle. Language model technology can play a huge role in empowering these users and help them interact with others with less effort via interaction support. To enable this population, we build a system that can represent them in a social conversation and generate responses that can be controlled by the users using cues/keywords. We build models that can speed up this communication by suggesting relevant cues in the dialog response context. We also introduce a keyword-loss to lexically constrain the model response output. We present automatic and human evaluation of our cue/keyword predictor and the controllable dialog system to show that our models perform significantly better than models without control. Our evaluation and user study shows that keyword-control on end-to-end response generation models is powerful and can enable and empower users with degenerative disorders to carry out their day-to-day communication.

pdf bib
Cue-bot: A Conversational Agent for Assistive Technology
Shachi H Kumar | Hsuan Su | Ramesh Manuvinakurike | Maximilian C. Pinaroc | Sai Prasad | Saurav Sahay | Lama Nachman
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

Intelligent conversational assistants have become an integral part of our lives for performing simple tasks. However, such agents, for example, Google bots, Alexa and others are yet to have any social impact on minority population, for example, for people with neurological disorders and people with speech, language and social communication disorders, sometimes with locked-in states where speaking or typing is a challenge. Language model technologies can be very powerful tools in enabling these users to carry out daily communication and social interactions. In this work, we present a system that users with varied levels of disabilties can use to interact with the world, supported by eye-tracking, mouse controls and an intelligent agent Cue-bot, that can represent the user in a conversation. The agent provides relevant controllable ‘cues’ to generate desirable responses quickly for an ongoing dialog context. In the context of usage of such systems for people with degenerative disorders, we present automatic and human evaluation of our cue/keyword predictor and the controllable dialog system and show that our models perform significantly better than models without control and can also reduce user effort (fewer keystrokes) and speed up communication (typing time) significantly.