Sai Qian Zhang
2024
T3M: Text Guided 3D Human Motion Synthesis from Speech
Wenshuo Peng
|
Kaipeng Zhang
|
Sai Qian Zhang
Findings of the Association for Computational Linguistics: NAACL 2024
Speech-driven 3D motion synthesis seeks to create lifelike animations based on human speech, with potential uses in virtual reality, gaming, and the film production. Existing approaches reply solely on speech audio for motion generation, leading to inaccurate and inflexible synthesis results. To mitigate this problem, we introduce a novel text-guided 3D human motion synthesis method, termed T3M. Unlike traditional approaches, T3M allows precise control over motion synthesis via textual input, enhancing the degree of diversity and user customization. The experiment results demonstrate that T3M can greatly outperform the state-of-the-art methods in both quantitative metrics and qualitative evaluations. We have publicly released our code at https://github.com/Gloria2tt/naacl2024.git
DLoRA: Distributed Parameter-Efficient Fine-Tuning Solution for Large Language Model
Chao Gao
|
Sai Qian Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024
To enhance the performance of large language models (LLM) on downstream tasks, one solution is to fine-tune certain LLM parameters and make them better align with the characteristics of the training dataset. This process is commonly known as parameter-efficient fine-tuning (PEFT). Due to the scale of LLM, PEFT operations are usually executed in the public environment (e.g., cloud server). This necessitates sharing sensitive user data across public environments, thereby raising potential privacy concerns. To tackle these challenges, we propose a distributed PEFT framework called DLoRA. DLoRA enables scalable PEFT operations to be performed collaboratively between the cloud and user devices. Coupled with the proposed Kill and Revive algorithm, the evaluation results demonstrate that DLoRA can significantly reduce the computation and communication workload over user devices while achieving superior accuracy and privacy protection.