Salaheddin Alzubi
2022
aiXplain at Arabic Hate Speech 2022: An Ensemble Based Approach to Detecting Offensive Tweets
Salaheddin Alzubi
|
Thiago Castro Ferreira
|
Lucas Pavanelli
|
Mohamed Al-Badrashiny
Proceedinsg of the 5th Workshop on Open-Source Arabic Corpora and Processing Tools with Shared Tasks on Qur'an QA and Fine-Grained Hate Speech Detection
Abusive speech on online platforms has a detrimental effect on users’ mental health. This warrants the need for innovative solutions that automatically moderate content, especially on online platforms such as Twitter where a user’s anonymity is loosely controlled. This paper outlines aiXplain Inc.’s ensemble based approach to detecting offensive speech in the Arabic language based on OSACT5’s shared sub-task A. Additionally, this paper highlights multiple challenges that may hinder progress on detecting abusive speech and provides potential avenues and techniques that may lead to significant progress.
Search