Sally Bruen


pdf bib
Empowering Adaptive Digital Game-Based Language Learning for Under-Resourced Languages Through Text Analysis
Elaine Uí Dhonnchadha | Sally Bruen | Liang Xu | Monica Ward
Proceedings of the 10th Workshop on Games and Natural Language Processing @ LREC-COLING 2024

This study explores Cipher, an adaptive language learning game tailored for the under-resourced Irish language, aimed mainly at primary school students. By integrating text analysis techniques, Cipher dynamically adjusts its difficulty based on the player’s language proficiency, offering a customised learning experience. The game’s narrative involves decoding spells to access Irish myths and stories, combining language learning with cultural elements. Development involved collaboration with educators to align the game content with curriculum standards and incorporate culturally relevant materials. This paper outlines the game’s development process, emphasising the use of text analysis for difficulty adjustment and the importance of engaging, educational gameplay. Preliminary results indicate that adaptive games like Cipher can enhance language learning by providing immersive, personalised experiences that maintain player motivation and engagement.

pdf bib
Exploring Text Classification for Enhancing Digital Game-Based Language Learning for Irish
Leona Mc Cahill | Thomas Baltazar | Sally Bruen | Liang Xu | Monica Ward | Elaine Uí Dhonnchadha | Jennifer Foster
Proceedings of the 3rd Annual Meeting of the Special Interest Group on Under-resourced Languages @ LREC-COLING 2024

Digital game-based language learning (DGBLL) can help with the language learning process. DGBLL applications can make learning more enjoyable and engaging, but they are difficult to develop. A DBGLL app that relies on target language texts obviously needs to be able to use texts of the appropriate level for the individual learners. This implies that text classification tools should be available to DGBLL developers, who may not be familiar with the target language, in order to incorporate suitable texts into their games. While text difficulty classifiers exist for many of the most commonly spoken languages, this is not the case for under-resourced languages, such as Irish. In this paper, we explore approaches to the development of text classifiers for Irish. In the first approach to text analysis and grading, we apply linguistic analysis to assess text complexity. Features from this approach are then used in machine learning-based text classification, which explores the application of a number of machine learning algorithms to the problem. Although the development of these text classifiers is at an early stage, they show promise, particularly in a low-resourced scenario.