Sameena Shah


2024

pdf bib
Towards a new research agenda for multimodal enterprise document understanding: What are we missing?
Armineh Nourbakhsh | Sameena Shah | Carolyn Rose
Findings of the Association for Computational Linguistics: ACL 2024

The field of multimodal document understanding has produced a suite of models that have achieved stellar performance across several tasks, even coming close to human performance on certain benchmarks. Nevertheless, the application of these models to real-world enterprise datasets remains constrained by a number of limitations. In this position paper, we discuss these limitations in the context of three key aspects of research: dataset curation, model development, and evaluation on downstream tasks. By analyzing 14 datasets and 7 SotA models, we identify major gaps in their utility in the context of a real-world scenario. We demonstrate how each limitation impedes the widespread use of SotA models in enterprise settings, and present a set of research challenges that are motivated by these limitations. Lastly, we propose a research agenda that is aimed at driving the field towards higher impact in enterprise applications.

pdf bib
AliGATr: Graph-based layout generation for form understanding
Armineh Nourbakhsh | Zhao Jin | Siddharth Parekh | Sameena Shah | Carolyn Rose
Findings of the Association for Computational Linguistics: EMNLP 2024

Forms constitute a large portion of layout-rich documents that convey information through key-value pairs. Form understanding involves two main tasks, namely, the identification of keys and values (a.k.a Key Information Extraction or KIE) and the association of keys to corresponding values (a.k.a. Relation Extraction or RE). State of the art models for form understanding often rely on training paradigms that yield poorly calibrated output probabilities and low performance on RE. In this paper, we present AliGATr, a graph-based model that uses a generative objective to represent complex grid-like layouts that are often found in forms. Using a grid-based graph topology, our model learns to generate the layout of each page token by token in a data efficient manner. Despite using 30% fewer parameters than the smallest SotA, AliGATr performs on par with or better than SotA models on the KIE and RE tasks against four datasets. We also show that AliGATr’s output probabilities are better calibrated and do not exhibit the over-confident distributions of other SotA models.

pdf bib
TreeForm: End-to-end Annotation and Evaluation for Form Document Parsing
Ran Zmigrod | Zhiqiang Ma | Armineh Nourbakhsh | Sameena Shah
Proceedings of The 18th Linguistic Annotation Workshop (LAW-XVIII)

Visually Rich Form Understanding (VRFU) poses a complex research problemdue to the documents’ highly structured nature and yet highly variable style and content. Current annotation schemes decompose form understanding and omit key hierarchical structure, making development and evaluation of end-to-end models difficult. In this paper, we propose a novel F1 metric to evaluate form parsers and describe a new content-agnostic, tree-based annotation scheme for VRFU: TreeForm. We provide methods to convert previous annotation schemes into TreeForm structures and evaluate TreeForm predictions using a modified version of the normalized tree-edit distance. We present initial baselines for our end-to-end performance metric and the TreeForm edit distance, averaged over the FUNSD and XFUND datasets, of 61.5 and 26.4 respectively. We hope that TreeForm encourages deeper research in annotating, modeling, and evaluating the complexities of form-like documents.

pdf bib
Can GPT models be Financial Analysts? An Evaluation of ChatGPT and GPT-4 on mock CFA Exams
Ethan Callanan | Amarachi Mbakwe | Antony Papadimitriou | Yulong Pei | Mathieu Sibue | Xiaodan Zhu | Zhiqiang Ma | Xiaomo Liu | Sameena Shah
Proceedings of the Eighth Financial Technology and Natural Language Processing and the 1st Agent AI for Scenario Planning

2023

pdf bib
Using counterfactual contrast to improve compositional generalization for multi-step quantitative reasoning
Armineh Nourbakhsh | Sameena Shah | Carolyn Rosé
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In quantitative question answering, compositional generalization is one of the main challenges of state of the art models, especially when longer sequences of reasoning steps are required. In this paper we propose CounterComp, a method that uses counterfactual scenarios to generate samples with compositional contrast. Instead of a data augmentation approach, CounterComp is based on metric learning, which allows for direct sampling from the training set and circumvents the need for additional human labels. Our proposed auxiliary metric learning loss improves the performance of three state of the art models on four recently released datasets. We also show how the approach can improve OOD performance on unseen domains, as well as unseen compositions. Lastly, we demonstrate how the method can lead to better compositional attention patterns during training.

pdf bib
Are ChatGPT and GPT-4 General-Purpose Solvers for Financial Text Analytics? A Study on Several Typical Tasks
Xianzhi Li | Samuel Chan | Xiaodan Zhu | Yulong Pei | Zhiqiang Ma | Xiaomo Liu | Sameena Shah
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

The most recent large language models (LLMs) such as ChatGPT and GPT-4 have shown exceptional capabilities of generalist models, achieving state-of-the-art performance on a wide range of NLP tasks with little or no adaptation. How effective are such models in the finance domain? Understanding this basic question would have a significant impact on many downstream financial analytical tasks. In this paper, we conduct empirical studies and provide experimental evidences of their performance on a wide variety of financial text analytical problems, using eight benchmark datasets from five categories of tasks. We report both the strengths and limitations of the current models by comparing them to the state-of-the-art fine-tuned approaches and the recently released domain-specific pretrained models. We hope our study can help to understand the capability of the existing models in the financial domain and facilitate further improvements.

pdf bib
Unsupervised Domain Adaptation using Lexical Transformations and Label Injection for Twitter Data
Akshat Gupta | Xiaomo Liu | Sameena Shah
Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis

Domain adaptation is an important and widely studied problem in natural language processing. A large body of literature tries to solve this problem by adapting models trained on the source domain to the target domain. In this paper, we instead solve this problem from a dataset perspective. We modify the source domain dataset with simple lexical transformations to reduce the domain shift between the source dataset distribution and the target dataset distribution. We find that models trained on the transformed source domain dataset performs significantly better than zero-shot models. Using our proposed transformations to convert standard English to tweets, we reach an unsupervised part-of-speech (POS) tagging accuracy of 92.14% (from 81.54% zero shot accuracy), which is only slightly below the supervised performance of 94.45%. We also use our proposed transformations to synthetically generate tweets and augment the Twitter dataset to achieve state-of-the-art performance for POS tagging.

2022

pdf bib
Improving compositional generalization for multi-step quantitative reasoning in question answering
Armineh Nourbakhsh | Cathy Jiao | Sameena Shah | Carolyn Rosé
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Quantitative reasoning is an important aspect of question answering, especially when numeric and verbal cues interact to indicate sophisticated, multi-step programs. In this paper, we demonstrate how modeling the compositional nature of quantitative text can enhance the performance and robustness of QA models, allowing them to capture arithmetic logic that is expressed verbally. Borrowing from the literature on semantic parsing, we propose a method that encourages the QA models to adjust their attention patterns and capture input/output alignments that are meaningful to the reasoning task. We show how this strategy improves program accuracy and renders the models more robust against overfitting as the number of reasoning steps grows. Our approach is designed as a standalone module which can be prepended to many existing models and trained in an end-to-end fashion without the need for additional supervisory signal. As part of this exercise, we also create a unified dataset building on four previously released numerical QA datasets over tabular data.

pdf bib
ConvFinQA: Exploring the Chain of Numerical Reasoning in Conversational Finance Question Answering
Zhiyu Chen | Shiyang Li | Charese Smiley | Zhiqiang Ma | Sameena Shah | William Yang Wang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

With the recent advance in large pre-trained language models, researchers have achieved record performances in NLP tasks that mostly focus on language pattern matching. The community is experiencing the shift of the challenge from how to model language to the imitation of complex reasoning abilities like human beings. In this work, we investigate the application domain of finance that involves real-world, complex numerical reasoning. We propose a new large-scale dataset, ConvFinQA, aiming to study the chain of numerical reasoning in conversational question answering. Our dataset poses great challenge in modeling long-range, complex numerical reasoning paths in real-world conversations. We conduct comprehensive experiments and analyses with both the neural symbolic methods and the prompting-based methods, to provide insights into the reasoning mechanisms of these two divisions. We believe our new dataset should serve as a valuable resource to push forward the exploration of real-world, complex reasoning tasks as the next research focus. Our dataset and code is publicly available at https://github.com/czyssrs/ConvFinQA.

pdf bib
TweetFinSent: A Dataset of Stock Sentiments on Twitter
Yulong Pei | Amarachi Mbakwe | Akshat Gupta | Salwa Alamir | Hanxuan Lin | Xiaomo Liu | Sameena Shah
Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP)

Stock sentiment has strong correlations with the stock market but traditional sentiment analysis task classifies sentiment according to having feelings and emotions of good or bad. This definition of sentiment is not an accurate indicator of public opinion about specific stocks. To bridge this gap, we introduce a new task of stock sentiment analysis and present a new dataset for this task named TweetFinSent. In TweetFinSent, tweets are annotated based on if one gained or expected to gain positive or negative return from a stock. Experiments on TweetFinSent with several sentiment analysis models from lexicon-based to transformer-based have been conducted. Experimental results show that TweetFinSent dataset constitutes a challenging problem and there is ample room for improvement on the stock sentiment analysis task. TweetFinSent is available at https://github.com/jpmcair/tweetfinsent.

pdf bib
AIR-JPMC@SMM4H’22: Classifying Self-Reported Intimate Partner Violence in Tweets with Multiple BERT-based Models
Alec Louis Candidato | Akshat Gupta | Xiaomo Liu | Sameena Shah
Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task

This paper presents our submission for the SMM4H 2022-Shared Task on the classification of self-reported intimate partner violence on Twitter (in English). The goal of this task was to accurately determine if the contents of a given tweet demonstrated someone reporting their own experience with intimate partner violence. The submitted system is an ensemble of five RoBERTa models each weighted by their respective F1-scores on the validation data-set. This system performed 13% better than the baseline and was the best performing system overall for this shared task.

pdf bib
AIR-JPMC@SMM4H’22: Identifying Self-Reported Spanish COVID-19 Symptom Tweets Through Multiple-Model Ensembling
Adrian Garcia Hernandez | Leung Wai Liu | Akshat Gupta | Vineeth Ravi | Saheed O. Obitayo | Xiaomo Liu | Sameena Shah
Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task

We present our response to Task 5 of the Social Media Mining for Health Applications (SMM4H) 2022 competition. We share our approach into classifying whether a tweet in Spanish about COVID-19 symptoms pertain to themselves, others, or not at all. Using a combination of BERT based models, we were able to achieve results that were higher than the median result of the competition.

pdf bib
AIR-JPMC@SMM4H’22: BERT + Ensembling = Too Cool: Using Multiple BERT Models Together for Various COVID-19 Tweet Identification Tasks
Leung Wai Liu | Akshat Gupta | Saheed Obitayo | Xiaomo Liu | Sameena Shah
Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task

This paper presents my submission for Tasks 1 and 2 for the Social Media Mining of Health (SMM4H) 2022 Shared Tasks competition. I first describe the background behind each of these tasks, followed by the descriptions of the various subtasks of Tasks 1 and 2, then present the methodology. Through model ensembling, this methodology was able to achieve higher results than the mean and median of the competition for the classification tasks.

2021

pdf bib
FinQA: A Dataset of Numerical Reasoning over Financial Data
Zhiyu Chen | Wenhu Chen | Charese Smiley | Sameena Shah | Iana Borova | Dylan Langdon | Reema Moussa | Matt Beane | Ting-Hao Huang | Bryan Routledge | William Yang Wang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The sheer volume of financial statements makes it difficult for humans to access and analyze a business’s financials. Robust numerical reasoning likewise faces unique challenges in this domain. In this work, we focus on answering deep questions over financial data, aiming to automate the analysis of a large corpus of financial documents. In contrast to existing tasks on general domain, the finance domain includes complex numerical reasoning and understanding of heterogeneous representations. To facilitate analytical progress, we propose a new large-scale dataset, FinQA, with Question-Answering pairs over Financial reports, written by financial experts. We also annotate the gold reasoning programs to ensure full explainability. We further introduce baselines and conduct comprehensive experiments in our dataset. The results demonstrate that popular, large, pre-trained models fall far short of expert humans in acquiring finance knowledge and in complex multi-step numerical reasoning on that knowledge. Our dataset – the first of its kind – should therefore enable significant, new community research into complex application domains. The dataset and code are publicly available at https://github.com/czyssrs/FinQA.

pdf bib
ViziTex: Interactive Visual Sense-Making of Text Corpora
Natraj Raman | Sameena Shah | Tucker Balch | Manuela Veloso
Proceedings of the Second Workshop on Data Science with Human in the Loop: Language Advances

Information visualization is critical to analytical reasoning and knowledge discovery. We present an interactive studio that integrates perceptive visualization techniques with powerful text analytics algorithms to assist humans in sense-making of large complex text corpora. The novel visual representations introduced here encode the features delivered by modern text mining models using advanced metaphors such as hypergraphs, nested topologies and tessellated planes. They enhance human-computer interaction experience for various tasks such as summarization, exploration, organization and labeling of documents. We demonstrate the ability of the visuals to surface the structure, relations and concepts from documents across different domains.

2017

pdf bib
Learning Stock Market Sentiment Lexicon and Sentiment-Oriented Word Vector from StockTwits
Quanzhi Li | Sameena Shah
Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)

Previous studies have shown that investor sentiment indicators can predict stock market change. A domain-specific sentiment lexicon and sentiment-oriented word embedding model would help the sentiment analysis in financial domain and stock market. In this paper, we present a new approach to learning stock market lexicon from StockTwits, a popular financial social network for investors to share ideas. It learns word polarity by predicting message sentiment, using a neural net-work. The sentiment-oriented word embeddings are learned from tens of millions of StockTwits posts, and this is the first study presenting sentiment-oriented word embeddings for stock market. The experiments of predicting investor sentiment show that our lexicon outperformed other lexicons built by the state-of-the-art methods, and the sentiment-oriented word vector was much better than the general word embeddings.

pdf bib
funSentiment at SemEval-2017 Task 4: Topic-Based Message Sentiment Classification by Exploiting Word Embeddings, Text Features and Target Contexts
Quanzhi Li | Armineh Nourbakhsh | Xiaomo Liu | Rui Fang | Sameena Shah
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

This paper describes the approach we used for SemEval-2017 Task 4: Sentiment Analysis in Twitter. Topic-based (target-dependent) sentiment analysis has become attractive and been used in some applications recently, but it is still a challenging research task. In our approach, we take the left and right context of a target into consideration when generating polarity classification features. We use two types of word embeddings in our classifiers: the general word embeddings learned from 200 million tweets, and sentiment-specific word embeddings learned from 10 million tweets using distance supervision. We also incorporate a text feature model in our algorithm. This model produces features based on text negation, tf.idf weighting scheme, and a Rocchio text classification method. We participated in four subtasks (B, C, D & E for English), all of which are about topic-based message polarity classification. Our team is ranked #6 in subtask B, #3 by MAEu and #9 by MAEm in subtask C, #3 using RAE and #6 using KLD in subtask D, and #3 in subtask E.

pdf bib
funSentiment at SemEval-2017 Task 5: Fine-Grained Sentiment Analysis on Financial Microblogs Using Word Vectors Built from StockTwits and Twitter
Quanzhi Li | Sameena Shah | Armineh Nourbakhsh | Rui Fang | Xiaomo Liu
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

This paper describes the approach we used for SemEval-2017 Task 5: Fine-Grained Sentiment Analysis on Financial Microblogs. We use three types of word embeddings in our algorithm: word embeddings learned from 200 million tweets, sentiment-specific word embeddings learned from 10 million tweets using distance supervision, and word embeddings learned from 20 million StockTwits messages. In our approach, we also take the left and right context of the target company into consideration when generating polarity prediction features. All the features generated from different word embeddings and contexts are integrated together to train our algorithm

2016

pdf bib
Witness Identification in Twitter
Rui Fang | Armineh Nourbakhsh | Xiaomo Liu | Sameena Shah | Quanzhi Li
Proceedings of the Fourth International Workshop on Natural Language Processing for Social Media