Saminu Mohammad Aliyu


2024

pdf bib
Mitigating Translationese in Low-resource Languages: The Storyboard Approach
Garry Kuwanto | Eno-Abasi E. Urua | Priscilla Amondi Amuok | Shamsuddeen Hassan Muhammad | Anuoluwapo Aremu | Verrah Otiende | Loice Emma Nanyanga | Teresiah W. Nyoike | Aniefon D. Akpan | Nsima Ab Udouboh | Idongesit Udeme Archibong | Idara Effiong Moses | Ifeoluwatayo A. Ige | Benjamin Ajibade | Olumide Benjamin Awokoya | Idris Abdulmumin | Saminu Mohammad Aliyu | Ruqayya Nasir Iro | Ibrahim Said Ahmad | Deontae Smith | Praise-EL Michaels | David Ifeoluwa Adelani | Derry Tanti Wijaya | Anietie Andy
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Low-resource languages often face challenges in acquiring high-quality language data due to the reliance on translation-based methods, which can introduce the translationese effect. This phenomenon results in translated sentences that lack fluency and naturalness in the target language. In this paper, we propose a novel approach for data collection by leveraging storyboards to elicit more fluent and natural sentences. Our method involves presenting native speakers with visual stimuli in the form of storyboards and collecting their descriptions without direct exposure to the source text. We conducted a comprehensive evaluation comparing our storyboard-based approach with traditional text translation-based methods in terms of accuracy and fluency. Human annotators and quantitative metrics were used to assess translation quality. The results indicate a preference for text translation in terms of accuracy, while our method demonstrates worse accuracy but better fluency in the language focused.

2023

pdf bib
HausaNLP at SemEval-2023 Task 12: Leveraging African Low Resource TweetData for Sentiment Analysis
Saheed Abdullahi Salahudeen | Falalu Ibrahim Lawan | Ahmad Wali | Amina Abubakar Imam | Aliyu Rabiu Shuaibu | Aliyu Yusuf | Nur Bala Rabiu | Musa Bello | Shamsuddeen Umaru Adamu | Saminu Mohammad Aliyu
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

We present the findings of SemEval-2023 Task 12, a shared task on sentiment analysis for low-resource African languages using Twitter dataset. The task featured three subtasks; subtask A is monolingual sentiment classification with 12 tracks which are all monolingual languages, subtask B is multilingual sentiment classification using the tracks in subtask A and subtask C is a zero-shot sentiment classification. We present the results and findings of subtask A, subtask B and subtask C. We also release the code on github. Our goal is to leverage low-resource tweet data using pre-trained Afro-xlmr-large, AfriBERTa-Large, Bert-base-arabic-camelbert-da-sentiment (Arabic-camelbert), Multilingual-BERT (mBERT) and BERT models for sentiment analysis of 14 African languages. The datasets for these subtasks consists of a gold standard multi-class labeled Twitter datasets from these languages. Our results demonstrate that Afro-xlmr-large model performed better compared to the other models in most of the languages datasets. Similarly, Nigerian languages: Hausa, Igbo, and Yoruba achieved better performance compared to other languages and this can be attributed to the higher volume of data present in the languages.

pdf bib
HausaNLP at SemEval-2023 Task 10: Transfer Learning, Synthetic Data and Side-information for Multi-level Sexism Classification
Saminu Mohammad Aliyu | Idris Abdulmumin | Shamsuddeen Hassan Muhammad | Ibrahim Said Ahmad | Saheed Abdullahi Salahudeen | Aliyu Yusuf | Falalu Ibrahim Lawan
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

We present the findings of our participation in the SemEval-2023 Task 10: Explainable Detection of Online Sexism (EDOS) task, a shared task on offensive language (sexism) detection on English Gab and Reddit dataset. We investigated the effects of transferring two language models: XLM-T (sentiment classification) and HateBERT (same domain - Reddit) for multilevel classification into Sexist or not Sexist, and other subsequent sub-classifications of the sexist data. We also use synthetic classification of unlabelled dataset and intermediary class information to maximize the performance of our models. We submitted a system in Task A, and it ranked 49th with F1-score of 0.82. This result showed to be competitive as it only under-performed the best system by 0.052%F1-score.