Samuel Stevens
2023
Roll Up Your Sleeves: Working with a Collaborative and Engaging Task-Oriented Dialogue System
Lingbo Mo
|
Shijie Chen
|
Ziru Chen
|
Xiang Deng
|
Ashley Lewis
|
Sunit Singh
|
Samuel Stevens
|
Chang-You Tai
|
Zhen Wang
|
Xiang Yue
|
Tianshu Zhang
|
Yu Su
|
Huan Sun
Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue
We introduce TacoBot, a user-centered task-oriented digital assistant designed to guide users through complex real-world tasks with multiple steps. Covering a wide range of cooking and how-to tasks, we aim to deliver a collaborative and engaging dialogue experience. Equipped with language understanding, dialogue management, and response generation components supported by a robust search engine, TacoBot ensures efficient task assistance. To enhance the dialogue experience, we explore a series of data augmentation strategies using LLMs to train advanced neural models continuously. TacoBot builds upon our successful participation in the inaugural Alexa Prize TaskBot Challenge, where our team secured third place among ten competing teams. We offer TacoBot as an open-source framework that serves as a practical example for deploying task-oriented dialogue systems.
2022
arXivEdits: Understanding the Human Revision Process in Scientific Writing
Chao Jiang
|
Wei Xu
|
Samuel Stevens
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Scientific publications are the primary means to communicate research discoveries, where the writing quality is of crucial importance. However, prior work studying the human editing process in this domain mainly focused on the abstract or introduction sections, resulting in an incomplete picture. In this work, we provide a complete computational framework for studying text revision in scientific writing. We first introduce arXivEdits, a new annotated corpus of 751 full papers from arXiv with gold sentence alignment across their multiple versions of revision, as well as fine-grained span-level edits and their underlying intentions for 1,000 sentence pairs. It supports our data-driven analysis to unveil the common strategies practiced by researchers for revising their papers. To scale up the analysis, we also develop automatic methods to extract revision at document-, sentence-, and word-levels. A neural CRF sentence alignment model trained on our corpus achieves 93.8 F1, enabling the reliable matching of sentences between different versions. We formulate the edit extraction task as a span alignment problem, and our proposed method extracts more fine-grained and explainable edits, compared to the commonly used diff algorithm. An intention classifier trained on our dataset achieves 78.9 F1 on the fine-grained intent classification task. Our data and system are released at tiny.one/arxivedits.
2021
An Investigation of Language Model Interpretability via Sentence Editing
Samuel Stevens
|
Yu Su
Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP
Pre-trained language models (PLMs) like BERT are being used for almost all language-related tasks, but interpreting their behavior still remains a significant challenge and many important questions remain largely unanswered. In this work, we re-purpose a sentence editing dataset, where faithful high-quality human rationales can be automatically extracted and compared with extracted model rationales, as a new testbed for interpretability. This enables us to conduct a systematic investigation on an array of questions regarding PLMs’ interpretability, including the role of pre-training procedure, comparison of rationale extraction methods, and different layers in the PLM. The investigation generates new insights, for example, contrary to the common understanding, we find that attention weights correlate well with human rationales and work better than gradient-based saliency in extracting model rationales. Both the dataset and code will be released to facilitate future interpretability research.